EEP/IAS 118 - Introductory Applied Econometrics, Lecture 12

Gregory Lane

August 2017

There are three mains types of data we are concerned with in this class:

- 1 Cross section
- 2 Pooled cross section
- 3 Panel Data

Data Types: Cross Section

A cross section is a snapshot of (randomly selected) individuals at one point in time. This is like the data we have used most often is the past.

Notation: we use i to index individuals:

 $wage_i = \beta_0 + \beta_1 edu_i + \beta_2 exper_i + \beta_3 female_i + u_i$

indiv	wage	edu	exper	female
1	3.10	11	2	1
2	3.24	12	22	1
100	5.30	12	7	0

Data Types: Pooled cross section

We also call this "repeated cross-section". This is multiple snapshots of multiple bunches of (randomly selected) individuals at many points in time.

Notation: We still only use i to index observations

$$hprice_i = \beta_0 + \beta_1 bdrms_i + \beta_2 bthrms_i + \beta_3 sqrft_i + \delta y 2010_i + u_i$$

• Note: we can still control for the fact that observations are from different years using the *y*2010_{*i*} dummy

Data Types: Pooled cross section

Example:

house	year	hprice	bdrms	bthrms	sqrft
1	2000	85,500	3	2.0	1600
2	2000	67,300	3	2.5	1400
	•	•		-	•
100	2000	134,000	4	2.5	2000
101	2010	243,000	4	3.0	2600
102	2010	65,000	2	1.0	1250

Data Types: Panel

Panel data tracks the *same* observations over time. With panel data we start indexing observations by t as well as i

i	t	crime rate	pop density	police
1	2000	9.3	2.24	440
1	2001	11.6	2.38	471
2	2000	7.6	1.61	75
2	2001	10.3	1.73	75
100	2000	11.1	11.1	520
100	2001	17.2	17.2	493

Two-Period Panel Data

Let's investigate a two period panel data set:

- data on crime and unemployment rates for 46 cities for 1982 and 1987.
- two time periods, t = 1, and t = 2.

Let's use just the 1987 cross section and run a simple regression of crime on unemployment:

$$\widehat{crmrte} = 128.38 - 4.16unemp$$

- Interpret the coefficient on unemployment
- Does this make sense?
- What might be the problem?

Two-Period Panel Data

Why did we get such a strange result?: omitted variable bias

• Can we solve the problem just by adding more controls?

 $\widehat{crmrte} = 140.06 - 6.7unem + 0.059area - 21.963west - 0.002income$ (2.74) (1.80) (1.23) (1.79) (0.53)

- No
- Why? Probably because there are other important omitted variables that we can't control for

Two-Period Panel Data

How do we deal with (some) of this problem?

Fixed Effects

- Add back the second year of data and a dummy for the year
- Individual dummies that control for the unit of interest (city)
- Capture all unobserved, time-constant factors that affect crime rates

Incorporating these things we get the following result:

$$\widehat{crmrte} = 91.6 + 2.9unem + 1.8officers - 0.06income + \delta_2 city2 + \dots + \delta_{46} city46 + d87$$

• Now the coefficient on unemployment makes sense

Fixed Effects

What exactly are the fixed effects doing for our regression?

- In our example, the FE are controlling for which city we are in
 - Captures everything unique about that city (e.g. size, climate, culture, corruption)
- Have (i-1) new parameters in our regression
 - Interpret these parameters as we do other dummy variables $\Rightarrow \delta_i$ is the average difference in crime rate for that city relative to the omitted group
- Leave out variables that are constant across time
 - Dropped *area* and *west* from the regression because they are perfectly co-linear with the city fixed effects
 - The city fixed effects already control for these constant differences

Fixed Effects

The general fixed effect model is written as:

$$y_{it} = \beta x_{it} + \gamma_t d_t + a_i + u_{it}$$

 $crimes_{it} = \beta_0 + \beta_1 unemp_{it} + \beta_2 income_{it} + a_i + d_t + u_{it}$

- The *a_i* capture all unobserved, time constant factors within each *i* that affect *y_{it}*
- In effect this is like adding controls for lots of individual specific characteristics
- Note that another way to interpret the *a_i* is as a separate intercept for each city
- Question: What type of omitted variables do we still need to worry about?

Fixed Effects

$$y_{it} = \beta x_{it} + \gamma_t d_t + a_i + u_{it}$$

- What type of omitted variables do we still need to worry about?
 - **Time varying omitted variables:** these variables will *not* be controlled for in the city fixed effects
 - Can be things like changes in police practices within a city (i.e. in response to increases or decreases in crime rate)
 - Note that variables that change over time, but in the same way for all cities will be controlled for by d_t. E.g. national GDP growth, federal policy changes, etc.
- Fixed effects take care of *some* types of omitted variables but not all

General Period Panel Data

Expand our analysis beyond a two-year panel - unit of observation is a city-year. Example data for 3 cities for 3 years \Rightarrow 9 total observations in our dataset.

i	t	crime rate	pop den	C 1	C 2	C 3	Yr00	Yr01	Yr0
1	2000	9.3	2.24	1	0	0	1	0	0
1	2001	11.6	2.38	1	0	0	0	1	0
1	2002	11.8	2.42	1	0	0	0	0	1
2	2000	7.6	1.61	0	1	0	1	0	0
2	2001	10.3	1.73	0	1	0	0	1	0
2	2002	11.9	1.81	0	1	0	0	0	1
3	2000	11.1	6.00	0	0	1	1	0	0
3	2001	17.2	6.33	0	0	1	0	1	0
3	2002	20.3	6.42	0	0	1	0	0	1

Interpreting Panel Regressions

We can expand our two-period model to incorporate the extra year(s):

$$crmrte_{it} = \beta_0 + \beta_1 popden_{it} + \alpha_2 City2 + \alpha_3 City3 + \delta_2 Yr01 + \delta_3 Yr02 + u_{it}$$

- As before, the α capture all time constant characteristics for a given city
- The δ capture effects that are common to all cities within that year
- How do we interpret β_1 , α_3 or δ_3 here?

Interpreting Panel Regressions

$$crmrte_{it} = \beta_0 + \beta_1 popden_{it} + \alpha_2 City2 + \alpha_3 City3 + \delta_2 Yr01 + \delta_3 Yr02 + u_{it}$$

- β₁ is the marginal effect of population density on predicted crime rate controlling for the year and the city
- 2 α₃ we can interpret as the "effect" of City3 relative to the omitted group (City1). *I.e. what is the average difference in crime rate between City3 and City1*
- 3 δ_3 we can interpret as the "effect" of Year02 relative to the omitted group (Year00). *I.e. what is the average difference in crime rate between Year2 and Year0*

Interpreting α_3 and δ_3 is analogous to how we interpret dummy variables

Panel Notation

We save time by writing δ_t and α_i instead of writing out each dummy variable. If we had 40 years instead of 3, writing out each dummy variable would get tedious.

• Note the subscripts: for a given city, the city dummy variable doesn't vary by year, and for a given year, the year dummy variable doesn't vary across cities.

 $crime_{it} = \beta_0 + \beta_1 popden_{it} + a_i + d_t + u_{it}$

- Anything that is constant for an individual over time is indexed by *i*
- Variables that are the same for all individuals in a given time are indexed by *t*
- Vars that move both across time and across individuals are indexed by *it*

Panel Regression in Stata

We have the model:

$$\widehat{crmrte}_{it} = \hat{\beta}_0 + \hat{\beta}_1 unem_{it} + \underbrace{\alpha_2 State2 + ...\alpha_{50} State50}_{\text{Dummy for all but one state}} + \underbrace{\delta_1 Yr2001 + \delta_2 Yr2002}_{\text{Dummy for all but one year}} + u_{it}$$

How do we run this in Stata?

- Easiest way is using the "i.var" syntax
- In our example this would look like:

reg crmrte unem i.stateid i.year

Alternatively you could run code to generate dummy variables explicitly:

tab stateid, gen(STATE) tab year, gen(YEAR) reg crmrte unem STATE* YEAR*

The " \ast " indicates that the regression should include all variables that begin with STATE or YEAR

Panel Regression in Stata

reg crmrte unem STATE* YEAR*

Source	SS	df	MS	Nur	ber of obs = F(53, 99)	153
Model Residual	11622.5233	53 99	219.292892 12.351665		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9048
Total	12845.3381	152	84.5088034		Root MSE	= 3.5145
mrdrte			Err. t		[95% Conf.	Interval]
unem STATE2 STATE3 STATE50	.2019432		557 0.69 745 0.76 709 0.27	0.495 0.452 0.789	3829162 -3.545855 -4.973695 -10.84505	
YEAR2 YEAR3 _cons	1.577016 1.681938 6.077295	.7433 .6959 3.300	858 2.12 821 2.42	0.036	.1019775 .3009584 4713127	3.052055 3.062917 12.6259

Panel Regression in Stata

Finally, you can use the *xtreg* command:

xtset stateid

xtreg crmrte unem i.year, fe

- You first specify your *i* variable with *xtset*.
- Then run regression with xtreg with fixed effect option "fe"
- Note you still have to specify year dummies

All these approaches will give you the same \hat{eta} on unemployment

Consider the following model:

$$y_{it} = \beta_1 x_{it1} + \beta_2 x_{it2} + \dots + \beta_k x_{itk} + a_i + \delta_t + u_{it}$$

- 1 Assumption 1: Model is linear in parameters
- 2 Assumption 2: Random sample
- 3 Assumption 3: Each x_k needs to vary either over time t, and across units i
- Assumption 4: E(u_{it}|x_{it}, a_i, δ_t) = 0 This assumption says that we don't want the u's in period t - 1 to be correlated with the x's in period t or t - 1
- **5** Assumption 5: $Var(u_{it}|x_{it}, a_i, \delta_t) = \sigma_u^2$

Implications:

- 1 From Assumption $A1 \rightarrow A4$ we get that β is unbiased.
- From Assumption A5: we get an expression we can estimate for var(β).

We have modified our model assumptions so that we know under what circumstances our estimate of β is unbiased

Consider the two regressions below using the same data:

$$y_{it} = \beta_0 + \beta_1 x_{1,it} + \dots + \beta_k x_{k,it} + u_{it}$$
(1)

$$y_{it} = \beta_0 + \beta_1 x_{1,it} + \dots + \beta_k x_{k,it} + a_i + u_{it}$$
(2)

- 1 What are the MLR.4 assumptions for each model?
- 2 What kind of omitted variable bias is mitigated by using model (2) instead of model (1)? (Why is model 2 *better* than model 1)

Consider the two regressions below using the same data:

$$y_{it} = \beta_0 + \beta_1 x_{1,it} + \dots + \beta_k x_{k,it} + u_{it}$$
(3)

$$y_{it} = \beta_0 + \beta_1 x_{1,it} + \dots + \beta_k x_{k,it} + a_i + u_{it}$$
(4)

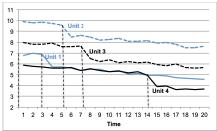
- What are the MLR.4 assumptions for each model? For (1): E[u_{it}|x_{it1},..., x_{itk}] = 0. For (2): E[u_{it}|x_{it1},..., x_{itk}, a_i] = 0
- 2 What kind of omitted variable bias is mitigated by using model (2) instead of model (1)?

Any omitted variable that is constant over time for a unit i will bias (1), but will not bias (2) because the fixed effect will capture any effect they have.

Generalized Diff-in-Diff

Before we dealt with a simple two period, two group scenario for our Diff-in-Diff estimation. What if we have something more complicated?

• Sometime treatment is introduced to different people at different points in time:



- We can use this staggered roll-out to estimate the effect of the program
- Note that here we don't have any "pure" control everyone eventually gets treatment!

Generalized Diff-in-Diff

The idea is we want to combine the logic of our diff-in-diff regression with a panel fixed effect model

- Use the units that have not yet been treated as the comparison group for units that have been treated
- Think back to the basic two-period two-group diff-in-diff regression:

$$y = \beta_0 + \beta_1 treat + \beta_2 post + \beta_3 post \times treat + u$$

This is very close to a two-period panel fixed effect model (with only two groups)

- *treat* is the unit fixed effect
- *post* is a time fixed effect
- *post* × *treat* is the time varying variable of interest

Generalized Diff-in-Diff

We expand this simple diff-in-diff frame work to the many unit and many time period case using a panel fixed effect model:

$$y_{it} = \beta_0 + \beta T_{it} + a_i + \delta_t + u_{it}$$

Key Assumption:

- The annual change in the comparison group is a good counterfactual for the annual change in the treatment group
- As before we want to test for the validity of this assumption
- Three issues we are particularly worried about:
 - 1 Differential trends
 - Ashenfelter dip ("pre-treatment dip")
 - 3 Confounding policies

Generalized Diff-in-Diff, Assumption Tests

Tests for Validity of Assumption:

- Differential Trends: Show that the entry into the treatment is not correlated with a differential trend in the pre-treatment period.
 - Define the change in outcome variable: dy = y(t) y(t-1)
 - Define the year of introduction of the policy: *policyyear*
 - Regress the change in outcome on the year in which the law was passed in the years before the policy was implemented:

reg dy policyyear if year < firstyearpolicy</pre>

• Want to obtain is a precise zero on the variable *policyyear*. If so, conclude that entry to treatment is not correlated with trends in the outcome variable.

Generalized Diff-in-Diff, Assumption Tests

- 2 Absence of Ashenfelter dip: We are concerned that policy was implemented in response to a sharp change in the outcome variable
 - Add two dummy variables for the year prior to and 2 years before the change in policy
 - Add them in the panel regression

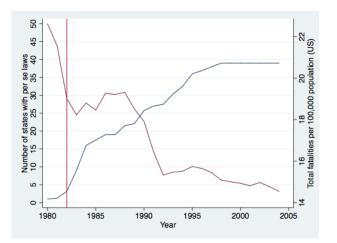
```
xtset state year
xtreg y policyyear policypre_1 policypre_2 i.year, fe
```

• Again you want to make sure that the estimated coefficients on *policypre*₁, *policypre*₂ are precise zeros.

Generalized Diff-in-Diff, Assumption Tests

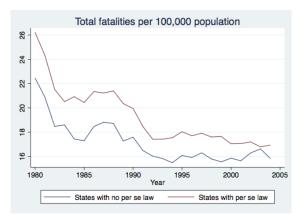
- 3 **Confounding Policies** Add other policies (or other covariates) that may be responsible for the change in outcome
 - Policies are often introduced as bundles
 - E.g. Increased change in policing coincides with a change in judicial sentencing guidelines
 - Requires knowledge of context in which policy of interest was implemented

Did the introduction of "per-se" seatbelt laws reduce traffic fatalities (Freeman, D.G., 2007)? Per-se laws mean that the state can revoke your license for a DUI



Two things to note:

- Selection: States with higher rates of fatalities choose to introduce law
- 2 Time trend: Strong trend even in states without the law



Use FE model to test hypothesis:

xtreg totfatrte perse i.year, fe i(state)

totfatrte	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
perse	-1.848261	.2423821	-7.63	0.000	-2.323831	-1.37269
year						
1981	-1.814749	.4565585	-3.97	0.000	-2.710549	9189488
1982	-4.468642	.4566879	-9.78	0.000	-5.364697	-3.572588
2002	-7.001794	.4952416	-14.14	0.000	-7.973493	-6.030095
2003	-7.267836	.4952416	-14.68	0.000	-8.239535	-6.296137
2004	-7.302419	.4952416	-14.75	0.000	-8.274118	-6.33072
_cons	25.53309	.3228739	79.08	0.000	24.89959	26.16659

We have large, negative, and significant effect. But need to test assumptions

Differential trends:

. reg dtotfat	trte perseyea	ar d82 if y	ear<1983		ear>1982 ber of obs	= 92
dtotfatrte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
perseyear d82 _cons	.0135805 -1.187174 -28.69584	.0415193 .6440271 82.70863	0.33 -1.84 -0.35	0.744 0.069 0.729	0689175 -2.466842 -193.0361	.0960785 .0924946 135.6445

Coefficient on *dperseyear* is small and insignificant

Ashenfelter Dip:

```
gen perse_1 = (year == perseyear-1)
gen perse_1 = (year == perseyear-2)
```

```
. xtreg totfatrte perse perse_1 perse_2 i.year, fe i(state)
```

totfatrte	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]
perse	-1.984322	.260309	-7.62	0.000	-2.495068	-1.473577
perse_1	67682	.3903417	-1.73	0.083	-1.4427	
perse_2 year	3457241	.4076816	-0.85	0.397	-1.145626	.4541778
1981	-1.785535	.4567127	-3.91	0.000	-2.681639	8894303
1982	-4.355375	.4646388	-9.37		-5.267031	-3.443719

Coefficients are not significant, in addition the point estimates are negative (here we would be concerned about positive coefficients)

Confounding Policies:

. xtreg totfatrte perse seatbelt minage slnone zerotol gdl i.year, fe i(state)

totfatrte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
perse seatbelt minage bac10 slnone zerotol	-2.079465 .1725957 .3597417 2905969 2599742 1.18105	.2494411 .1263679 .1146316 .1939357 .9542762 .2877223	-8.34 1.37 3.14 -1.50 -0.27 4.10	0.000 0.172 0.002 0.134 0.785 0.000	$\begin{array}{c} -2.568889 \\0753485 \\ .1348252 \\6711148 \\ -2.132343 \\ .6165153 \end{array}$	-1.590041 .42054 .5846583 .0899209 1.612394 1.745585
gdl	4026001	.3219036	-1.25	0.211	-1.034202	.2290014

Controlling for other policies doesn't change coefficient on perse