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Data Types

There are three mains types of data we are concerned with in this

class:

1 Cross section

2 Pooled cross section

3 Panel Data
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Data Types: Cross Section

A cross section is a snapshot of (randomly selected) individuals at

one point in time. This is like the data we have used most often is

the past.

Notation: we use i to index individuals:

wagei = β0 + β1edui + β2experi + β3 f emalei + ui

indiv wage edu exper female

1 3.10 11 2 1

2 3.24 12 22 1

. . . . .

100 5.30 12 7 0
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Data Types: Pooled cross section

We also call this “repeated cross-section”. This is multiple

snapshots of multiple bunches of (randomly selected) individuals at

many points in time.

Notation: We still only use i to index observations

hpricei = β0 + β1bdrmsi + β2bthrmsi + β3sqr f ti + δy2010i + ui

• Note: we can still control for the fact that observations are

from different years using the y2010i dummy
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Data Types: Pooled cross section

Example:

house year hprice bdrms bthrms sqrft

1 2000 85,500 3 2.0 1600

2 2000 67,300 3 2.5 1400

. . . . . .

100 2000 134,000 4 2.5 2000

101 2010 243,000 4 3.0 2600

102 2010 65,000 2 1.0 1250
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Data Types: Panel

Panel data tracks the same observations over time. With panel

data we start indexing observations by t as well as i

i t crime rate pop density police

1 2000 9.3 2.24 440

1 2001 11.6 2.38 471

2 2000 7.6 1.61 75

2 2001 10.3 1.73 75

. . . . .

100 2000 11.1 11.1 520

100 2001 17.2 17.2 493
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Two-Period Panel Data

Let’s investigate a two period panel data set:

• data on crime and unemployment rates for 46 cities for 1982

and 1987.

• two time periods, t = 1, and t = 2.

Let’s use just the 1987 cross section and run a simple regression of

crime on unemployment:

ĉrmrte = 128.38− 4.16unemp

• Interpret the coefficient on unemployment

• Does this make sense?

• What might be the problem?
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Two-Period Panel Data

Why did we get such a strange result?: omitted variable bias

• Can we solve the problem just by adding more controls?

ĉrmrte = 140.06− 6.7unem + 0.059area− 21.963west− 0.002income

(2.74) (1.80) (1.23) (1.79) (0.53)

• No

• Why? Probably because there are other important omitted

variables that we can’t control for
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Two-Period Panel Data
How do we deal with (some) of this problem?

Fixed Effects

• Add back the second year of data and a dummy for the year

• Individual dummies that control for the unit of interest (city)

• Capture all unobserved, time-constant factors that affect

crime rates

Incorporating these things we get the following result:

ĉrmrte = 91.6 + 2.9unem + 1.8o f f icers− 0.06income + δ2city2+

· · ·+ δ46city46 + d87

• Now the coefficient on unemployment makes sense
9 / 36



Fixed Effects

What exactly are the fixed effects doing for our regression?

• In our example, the FE are controlling for which city we are in

• Captures everything unique about that city (e.g. size, climate,

culture, corruption)

• Have (i− 1) new parameters in our regression

• Interpret these parameters as we do other dummy variables ⇒
δi is the average difference in crime rate for that city relative

to the omitted group

• Leave out variables that are constant across time

• Dropped area and west from the regression because they are

perfectly co-linear with the city fixed effects

• The city fixed effects already control for these constant

differences
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Fixed Effects
The general fixed effect model is written as:

yit = βxit + γtdt + ai + uit

crimesit = β0 + β1unempit + β2incomeit + ai + dt + uit

• The ai capture all unobserved, time constant factors within

each i that affect yit

• In effect this is like adding controls for lots of individual

specific characteristics

• Note that another way to interpret the ai is as a separate

intercept for each city

• Question: What type of omitted variables do we still need to

worry about?
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Fixed Effects

yit = βxit + γtdt + ai + uit

• What type of omitted variables do we still need to worry
about?

• Time varying omitted variables: these variables will not be

controlled for in the city fixed effects

• Can be things like changes in police practices within a city (i.e.

in response to increases or decreases in crime rate)

• Note that variables that change over time, but in the same

way for all cities will be controlled for by dt. E.g. national

GDP growth, federal policy changes, etc.

• Fixed effects take care of some types of omitted variables but

not all
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General Period Panel Data
Expand our analysis beyond a two-year panel - unit of observation

is a city-year. Example data for 3 cities for 3 years ⇒ 9 total

observations in our dataset.

i t crime rate pop den C 1 C 2 C 3 Yr00 Yr01 Yr02

1 2000 9.3 2.24 1 0 0 1 0 0

1 2001 11.6 2.38 1 0 0 0 1 0

1 2002 11.8 2.42 1 0 0 0 0 1

2 2000 7.6 1.61 0 1 0 1 0 0

2 2001 10.3 1.73 0 1 0 0 1 0

2 2002 11.9 1.81 0 1 0 0 0 1

3 2000 11.1 6.00 0 0 1 1 0 0

3 2001 17.2 6.33 0 0 1 0 1 0

3 2002 20.3 6.42 0 0 1 0 0 1
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Interpreting Panel Regressions

We can expand our two-period model to incorporate the extra

year(s):

crmrteit = β0 + β1 popdenit + α2City2 + α3City3 +

δ2Yr01 + δ3Yr02 + uit

• As before, the α capture all time constant characteristics for a

given city

• The δ capture effects that are common to all cities within that

year

• How do we interpret β1, α3 or δ3 here?
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Interpreting Panel Regressions

crmrteit = β0 + β1 popdenit + α2City2 + α3City3 +

δ2Yr01 + δ3Yr02 + uit

1 β1 is the marginal effect of population density on predicted

crime rate controlling for the year and the city

2 α3 we can interpret as the “effect” of City3 relative to the

omitted group (City1). I.e. what is the average difference in

crime rate between City3 and City1

3 δ3 we can interpret as the “effect” of Year02 relative to the

omitted group (Year00). I.e. what is the average difference in

crime rate between Year2 and Year0

Interpreting α3 and δ3 is analogous to how we interpret dummy

variables
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Panel Notation
We save time by writing δt and αi instead of writing out each

dummy variable. If we had 40 years instead of 3, writing out each

dummy variable would get tedious.

• Note the subscripts: for a given city, the city dummy

variable doesn’t vary by year, and for a given year, the year

dummy variable doesn’t vary across cities.

crimeit = β0 + β1 popdenit + ai + dt + uit

• Anything that is constant for an individual over time is

indexed by i

• Variables that are the same for all individuals in a given time

are indexed by t

• Vars that move both across time and across individuals are

indexed by it
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Panel Regression in Stata

We have the model:

ĉrmrteit = β̂0 + β̂1unemit + α2State2 + ...α50State50︸ ︷︷ ︸
Dummy for all but one state

+ δ1Yr2001 + δ2Yr2002︸ ︷︷ ︸
Dummy for all but one year

+uit

How do we run this in Stata?

• Easiest way is using the “ i.var ” syntax

• In our example this would look like:

reg crmrte unem i.stateid i.year
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Panel Regression in Stata

Alternatively you could run code to generate dummy variables

explicitly:

tab stateid, gen(STATE)

tab year, gen(YEAR)

reg crmrte unem STATE* YEAR*

The “ * ” indicates that the regression should include all variables

that begin with STATE or YEAR
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Panel Regression in Stata

reg crmrte unem STATE* YEAR*
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• So now we have both time and city fixed effects. This means that we cannot include any addi-
tional x variables that do not vary across both time t and across units i.

C. Panel Regressions in STATA:

There are a few ways to implement a regression that totally controls for city and time effects.
In these examples, I’ll use the dataset from class about murder rates and unemployment rates
across US states in the years 1987, 1990, and 1993.

1. \mrdrteit = b̂0 + b̂1unemit + a2State2 + ...a50State50| {z }
Dummy for all but one state

+ d1Yr2001 + d2Yr2002| {z }
Dummy for all but one year

+uit

In STATA:

reg mrdrte unem i.stateid i.year

or

tab stateid, gen(STATE)

tab year, gen(YEAR)

reg mrdrte unem STATE* YEAR*

Which produces the following regression output:

Source | SS df MS Number of obs = 153

-------------+------------------------------ F( 53, 99) = 17.75

Model | 11622.5233 53 219.292892 Prob > F = 0.0000

Residual | 1222.81484 99 12.351665 R-squared = 0.9048

-------------+------------------------------ Adj R-squared = 0.8538

Total | 12845.3381 152 84.5088034 Root MSE = 3.5145

------------------------------------------------------------------------------

mrdrte | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

unem | .2019432 .2947557 0.69 0.495 -.3829162 .7868025

STATE2 | 2.182073 2.886745 0.76 0.452 -3.545855 7.910001

STATE3 | .7759888 2.897709 0.27 0.789 -4.973695 6.525672

...

STATE50 | -5.036179 2.927538 -1.72 0.089 -10.84505 .7726923

YEAR2 | 1.577016 .7433858 2.12 0.036 .1019775 3.052055

YEAR3 | 1.681938 .6959821 2.42 0.017 .3009584 3.062917

_cons | 6.077295 3.300348 1.84 0.069 -.4713127 12.6259

------------------------------------------------------------------------------

2. \mrdrteit = b̂1unemit + a1State1 + ...a50State50| {z }
Dummy for each state

+ d1Yr2001 + d2Yr2002| {z }
Dummy for all but one year

+uit

In STATA:

reg mrdrte unem i.stateid i.year, noconstant

4
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Panel Regression in Stata

Finally, you can use the xtreg command:

xtset stateid

xtreg crmrte unem i.year, fe

• You first specify your i variable with xtset.

• Then run regression with xtreg with fixed effect option “fe”

• Note you still have to specify year dummies

All these approaches will give you the same β̂ on unemployment
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Assumptions for Fixed Effect Models

Consider the following model:

yit = β1xit1 + β2xit2 + · · ·+ βkxitk + ai + δt + uit

1 Assumption 1: Model is linear in parameters

2 Assumption 2: Random sample

3 Assumption 3: Each xk needs to vary either over time t, and

across units i

4 Assumption 4: E(uit|xit, ai, δt) = 0
This assumption says that we don’t want the u’s in period

t− 1 to be correlated with the x’s in period t or t− 1

5 Assumption 5: Var(uit|xit, ai, δt) = σ2
u
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Assumptions for Fixed Effect Models

Implications:

1 From Assumption A1→ A4 we get that β is unbiased.

2 From Assumption A5: we get an expression we can estimate

for var(β̂).

We have modified our model assumptions so that we know under

what circumstances our estimate of β is unbiased
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Assumptions for Fixed Effect Models

Consider the two regressions below using the same data:

yit = β0 + β1x1,it + ... + βkxk,it + uit (1)

yit = β0 + β1x1,it + ... + βkxk,it + ai + uit (2)

1 What are the MLR.4 assumptions for each model?

2 What kind of omitted variable bias is mitigated by using

model (2) instead of model (1)? (Why is model 2 better than

model 1)
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Assumptions for Fixed Effect Models

Consider the two regressions below using the same data:

yit = β0 + β1x1,it + ... + βkxk,it + uit (3)

yit = β0 + β1x1,it + ... + βkxk,it + ai + uit (4)

1 What are the MLR.4 assumptions for each model?

For (1): E[uit|xit1, ..., xitk] = 0.

For (2): E[uit|xit1, ..., xitk, ai] = 0

2 What kind of omitted variable bias is mitigated by using

model (2) instead of model (1)?

Any omitted variable that is constant over time for a unit i
will bias (1), but will not bias (2) because the fixed effect will

capture any effect they have.
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Generalized Diff-in-Diff
Before we dealt with a simple two period, two group scenario for

our Diff-in-Diff estimation. What if we have something more

complicated?

• Sometime treatment is introduced to different people at

different points in time:

• We can use this staggered roll-out to estimate the effect of

the program

• Note that here we don’t have any “pure” control - everyone

eventually gets treatment!
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Generalized Diff-in-Diff

The idea is we want to combine the logic of our diff-in-diff

regression with a panel fixed effect model

• Use the units that have not yet been treated as the

comparison group for units that have been treated

• Think back to the basic two-period two-group diff-in-diff

regression:

y = β0 + β1treat + β2 post + β3 post× treat + u

This is very close to a two-period panel fixed effect model
(with only two groups)

• treat is the unit fixed effect

• post is a time fixed effect

• post× treat is the time varying variable of interest
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Generalized Diff-in-Diff

We expand this simple diff-in-diff frame work to the many unit and

many time period case using a panel fixed effect model:

yit = β0 + βTit + ai + δt + uit

Key Assumption:

• The annual change in the comparison group is a good

counterfactual for the annual change in the treatment group

• As before we want to test for the validity of this assumption

• Three issues we are particularly worried about:

1 Differential trends

2 Ashenfelter dip - (”pre-treatment dip”)

3 Confounding policies
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Generalized Diff-in-Diff, Assumption Tests

Tests for Validity of Assumption:

1 Differential Trends: Show that the entry into the treatment
is not correlated with a differential trend in the pre-treatment
period.

• Define the change in outcome variable: dy = y(t)− y(t− 1)
• Define the year of introduction of the policy: policyyear
• Regress the change in outcome on the year in which the law

was passed in the years before the policy was implemented:

reg dy policyyear if year < firstyearpolicy

• Want to obtain is a precise zero on the variable policyyear. If

so, conclude that entry to treatment is not correlated with

trends in the outcome variable.
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Generalized Diff-in-Diff, Assumption Tests

2 Absence of Ashenfelter dip: We are concerned that policy
was implemented in response to a sharp change in the
outcome variable

• Add two dummy variables for the year prior to and 2 years

before the change in policy

• Add them in the panel regression

xtset state year

xtreg y policyyear policypre_1 policypre_2 i.year, fe

• Again you want to make sure that the estimated coefficients

on policypre1, policypre2 are precise zeros.
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Generalized Diff-in-Diff, Assumption Tests

3 Confounding Policies Add other policies (or other covariates)
that may be responsible for the change in outcome

• Policies are often introduced as bundles

• E.g. Increased change in policing coincides with a change in

judicial sentencing guidelines

• Requires knowledge of context in which policy of interest was

implemented
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Generalized Diff-in-Diff, Example
Did the introduction of “per-se” seatbelt laws reduce traffic

fatalities (Freeman, D.G., 2007)? Per-se laws mean that the state

can revoke your license for a DUI

31 / 36



Generalized Diff-in-Diff, Example
Two things to note:

1 Selection: States with higher rates of fatalities choose to

introduce law

2 Time trend: Strong trend even in states without the law
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Generalized Diff-in-Diff, Example

Use FE model to test hypothesis:

xtreg totfatrte perse i.year, fe i(state)

We have large, negative, and significant effect. But need to test

assumptions
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Generalized Diff-in-Diff, Example

Differential trends:

Coefficient on dperseyear is small and insignificant
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Generalized Diff-in-Diff, Example
Ashenfelter Dip:

gen perse_1 = (year == perseyear-1)

gen perse_1 = (year == perseyear-2)

Coefficients are not significant, in addition the point estimates are

negative (here we would be concerned about positive coefficients)
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Generalized Diff-in-Diff, Example

Confounding Policies:

Controlling for other policies doesn’t change coefficient on perse
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