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Review: Impact Evaluation Methods

1 Randomization (RCT)

• Key Assumption: If it were not for the treatment, C and T
group would be statistically identical

• Test of Assumption: Test “balance” of variables not affected

by the treatment

2 Diff-in-Diff

• Key Assumption: change from before to after in the

comparison group is a good counterfactual for the treatment

group

• Test of Assumption: Check for “parallel trends” in the periods

before the treatment
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Review: Impact Evaluation Methods

3 Generalized Diff-in-Diff

• Key Assumption: Annual change in control group(s) is good

counterfactual for annual change in treatment group
• Test of Assumption:

1 Entry into treatment not correlated with pre-trends

2 Absence of “Ashenfelter Dip”

3 Robustness to other policies

4 Regression Discontinuity

• Key Assumption: The outcome would be a continuous

function of the running variable around the threshold, if it were

not for the treatment

• Test of Assumption: Check for absence of discontinuity in

other variables around the threshold
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Linear Probability Model: Intro

Previously, we have talked extensively about including dummy

variables as X variables. However, sometimes our Y variable can

also be a dummy (i.e. only takes values of 0 or 1)

Let’s say we don’t change anything and run traditional linear

regression with with a dummy variable as our Y:

y = β0 + β1x1 + · · ·+ βkxk + ε

where

y ∈ {0, 1}

We can this type of analysis, a “linear probability model”
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Linear Probability Model: Interpretation

What changes with a dummy variable as our Y?

• We can’t interpret β j as the unit change in y given a one-unit

increase in xj holding all other factors fixed

• Y either changes from 0→ 1 or 1→ 0 or doesn’t change

• Instead, β j measures the change in the probability of Y
taking the value 1 when xj changes by one unit holding all

other factors fixed

• And, β̂ j measures the predicted change in the probability of

success when xj increases by one unit holding all other

variables fixed
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Linear Probability Model: Example

Let’s say we wanted to study the probability of women working

outside the home. We run a regression with a binary variables as

the Y indicating a woman was working outside the home on several

explanatory variables:

înl f = 0.586− 0.0034nwi f einc + 0.38educ + 0.039exper

− 0.0060exper2 − 0.017age− 0.262kindslt6 + 0.0130kidsge6

How do we interpret the coefficient on education?
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Linear Probability Model: Example

Let’s say we wanted to study the probability of women working

outside the home. We run a regression with a binary variables as

the Y indicating a woman was working outside the home on several

explanatory variables:

înl f = 0.586− 0.0034nwi f einc + 0.038educ + 0.039exper

− 0.0060exper2 − 0.017age− 0.262kindslt6 + 0.0130kidsge6

How do we interpret the coefficient on education?

Another year of education increases the predicted probability of

labor force participation by 0.038 holding all else constant
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Linear Probability Model: Example

We fix the values of the other variables and graph the relationship:

• It is possible to get negative probabilities

• The marginal effect of an additional year of education on the

probability of participation is constant (at 0.038)

8 / 27



Drawbacks of Linear Prob. Model

1 Predicted probabilities from regression aren’t bounded

between zero and one

2 There must be heteroskedasticity in the linear probability

model. This violates our assumption of homoskedasticity:

Var(u|x) = Var(u) = σ2

Therefore, our standard error calculations are more difficult
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Maximum Likelihood

How do we address these drawbacks? Use non-linear,

maximum-likelihood (ML) technics rather than OLS

There are many different types of ML techniques depending on the

specific situation:

• Binary Y: Logit or Probit model

• Count Data: Poisson Model

• Truncated Data: (a ≤ y ≤ b) Tobit Model

• Order Categorical Data: (1-5 rating scale) Ordered Probit

We will only focus on the first case
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Logit and Probit

The logit and probit functions look like this:

• Logit:

Pr(yi = 1 | x1i, x2i) =
eβ0+β1x1i+β2x2i

1 + eβ0+β1x1i+β2x2i

• Probit:

Pr(yi = 1 | x1i, x2i) =
∫ β+β1x1i+β2x2i

−∞
φ(v)dv

• Both output a probability for y = 1 given an input of x values

• Difference: Logit using the logistic distribution, probit uses

the normal distribution

• Both estimate β̂ j by maximizing the log-likelihood function
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Latent Variable Framework

How can we think about these equations? It is easiest to

understand this through the latent variable framework:

• Assume there is a variable y∗ that is generated by:

y∗ = β0 + β1x1 + · · · βkxk + u

We do not observe y∗. Instead we only see y which is simply:{
y = 1 if y∗ ≥ 0

y = 0 if y∗ < 0

I.e. think about a purchase of a good based on demand. We

only observe a purchase (y = 1) if demand (y∗ is greater than

the price y∗ ≥ p)
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Latent Variable Framework

What the Logit and Probit models are doing is making and

assumption on the error term u in the latent variable regression.

• Logit: u has logistic distribution

• Probit: u has normal distribution

Start with assuming u has a normal distribution:

Prob(y = 1) = Prob(y∗ = β0 + Xβ + u > 0)

= Prob(−u < β0 + Xβ)

= Φ(β0 + Xβ)

= Probit

Where Φ(·) is the CDF for the normal distribution

13 / 27



Latent Variable Framework

Likewise, if u follows an extreme value distribution:

Prob(y = 1) = Prob(y∗ = β0 + Xβ + u > 0)

= Prob(−µ < β0 + Xβ)

=
eβ0+Xβ

1 + eβ0+Xβ
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Latent Variable Framework
We can visualize what this model looks like:
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Latent Variable Framework

What can this picture tell us:

• The change in probability that y = 1 is not constant

• β may not be actually what we want to know
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Logit and Probit

This is complicated. Here are the main take-aways you should

know:

• Logit and Probit functions are bounded between 0 and 1, so

our predicted probabilities always make sense

• The marginal effect of x on P(y = 1) depends on the values

of xj. ⇒ there is NOT a constant marginal effect

• When asked for the marginal effect of x on P(y = 1), we

typically report their values at the mean of the Xes

• Stata does NOT automatically report the marginal effects.

Instead, you must specify the m f x command after running a

logit or probit model
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Logit and Probit: Example

Examine the probability that the favored actually team wins in a

game of basketball

f avwini = β̂0 + β̂1spreadi + β̂2 f avhomei + β̂3 f av25i + β̂4und25i + ûi

• Estimate first with a linear probability model
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Linear Probability Model

. reg favwin spread favhome fav25 und25, robust

Linear regression Number of obs = 553

F( 4, 548) = 26.20

Prob > F = 0.0000

R-squared = 0.1160

Root MSE = .40158

------------------------------------------------------------------------------

| Robust

favwin | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spread | .0177628 .0020565 8.64 0.000 .0137233 .0218023

favhome | .0543528 .0409228 1.33 0.185 -.026032 .1347376

fav25 | .0109819 .0391002 0.28 0.779 -.0658228 .0877865

und25 | -.101104 .0895298 -1.13 0.259 -.2769676 .0747596

_cons | .5588152 .0404217 13.82 0.000 .4794148 .6382156

------------------------------------------------------------------------------

• A 1 point increase in the Vegas point spread is estimated to

increase the predicted probability of winning by 1.78

percentage points, holding the other regressors constant
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Predicted Win Probabilities: Linear
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Probit

probit favwin spread favhome fav25 und25

Iteration 3: log likelihood = -262.64177

Iteration 4: log likelihood = -262.64177

Probit regression Number of obs = 553

LR chi2(4) = 80.22

Prob > chi2 = 0.0000

Log likelihood = -262.64177 Pseudo R2 = 0.1325

------------------------------------------------------------------------------

favwin | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spread | .0878845 .0129491 6.79 0.000 .0625047 .1132642

favhome | .1485753 .1370571 1.08 0.278 -.1200517 .4172024

fav25 | .003068 .15869 0.02 0.985 -.3079587 .3140946

und25 | -.2198082 .2505842 -0.88 0.380 -.7109443 .2713278

_cons | -.0551801 .128763 -0.43 0.668 -.3075509 .1971907

------------------------------------------------------------------------------

DON’T Interpret these!
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Probit: Marginal Effects

mfx

Marginal effects after probit

y = Pr(favwin) (predict)

= .80994736

------------------------------------------------------------------------------

variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X

---------+--------------------------------------------------------------------

spread | .0238529 .00313 7.62 0.000 .017719 .029987 9.61302

favhome*| .0412478 .03896 1.06 0.290 -.035104 .117599 .678119

fav25*| .0008322 .04302 0.02 0.985 -.083481 .085145 .264014

und25*| -.0645737 .07918 -0.82 0.415 -.219761 .090614 .061483

------------------------------------------------------------------------------

(*) dy/dx is for discrete change of dummy variable from 0 to 1

We can interpret as before: A 1 point increase in the Vegas point

spread is estimated to increase the probability of winning by 2.39

percentage points, holding all else constant
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Predicted Win Prob: Probit
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Likelihood Ratio Test

The likelihood ratio test (or ChiSquared test) is an F-test for the

logit and probit models

• Just like an F-test, an LR compares the fit of two nested

regressions, an unrestricted model and a restricted model.

• The test statistic is:

LR = 2(LLUR − LLR)

Where LLUR is the “log-likelihood” from the unrestricted

model, and LLR is the log-likelihood from the restricted model

• It is distributed Chi-squared, so our critical values will be

found in the chi-squared table
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Likelihood Ratio Test: Example

we wanted to test the hypothesis that being either in the top 25

teams as the favored team or as the underdog doesn’t affect the

probability of the favored team winning. To test this hypothesis,

we’d like to compare these two models:

Unrestricted model: Pr( f avwin = 1|spread...) =

Φ(β̂0 + β̂1spreadi + β̂2 f avhomei + β̂3 f av25i + β̂4und25i)

Restricted model: Pr( f avwin = 1|spread...) =

Φ(β̂0 + β̂1spreadi + β̂2 f avhomei)
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Likelihood Ratio Test: Example
Run the restricted model:

. probit favwin spread favhome

Iteration 0: log likelihood = -302.74988

Iteration 1: log likelihood = -264.51089

Iteration 2: log likelihood = -263.07028

Iteration 3: log likelihood = -263.06924

Iteration 4: log likelihood = -263.06924

Probit regression Number of obs = 553

LR chi2(2) = 79.36

Prob > chi2 = 0.0000

Log likelihood = -263.06924 Pseudo R2 = 0.1311

------------------------------------------------------------------------------

favwin | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

spread | .0900149 .0124116 7.25 0.000 .0656885 .1143413

favhome | .1311407 .1318301 0.99 0.320 -.1272415 .3895229

_cons | -.075713 .122677 -0.62 0.537 -.3161554 .1647295

------------------------------------------------------------------------------

Log likelihood = -263.069
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Likelihood Ratio Test: Example

After doing the same for the unrestricted model, we get our test

statistic:

LR = 2(LLUR − LLR) = 2(−262.64177− (−263.06924)) = 0.855

Let’s say we want to test at the 10% level: α = 0.10

• Looking at the table for two degrees of freedom (q = 2)

• Critical stat = 4.61

At the 10% significance level, we Fail to Reject the null hypothesis

because LR < c.
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