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Today

• Functional Form Reveiw

• Random Variable Review

• Distribution of Random Variables (PDF, CDF)

• Two Random Variables

• Assignments:

• Problem Set 1 Posted
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Math Review: Functional Forms

Yesterday, we discussed how econometrics is fundamentally about

estimating relationships between variables

• This course will focus on the linear regression model

• However, linear regression model can handle exponentials,
squares, logarithmics, etc.

• Linear regression only ensures the model is linear in the

parameters β j

• We will go through some of the common relationships
between x and y

• What these relationships look like in data

• How to interpret β
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Proportion, Percentages, Elasticity

First, review of some concepts:

• Proportional change: x1−x0
x0

= ∆x
x0

• Percentage change: x1−x0
x0
× 100 = ∆x

x0
× 100

• Elasticity : ∆z/z
∆x/x = ∂z

∂x
x
z

Note, percent change is just proportional change time 100.

Elasticity (η) is the ”percent change in one variable in response to

a given (one) percent change in another variable”

• If 0 < η < 1 then the elasticity is inelastic. If η > 1 then it is

elastic.
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Linear Relationships

From last class, we go back to relate CO2 and GDP:

We’ve drawn the line:

y = β0 + β1x ⇒ CO2/cap = 0.75 + 0.24 GDP/cap
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Linear Relationships

CO2/cap = 0.75 + 0.24 GDP/cap

How do we interpret this:

• β1 is the slope parameter and reflects the marginal effect of
GDP/cap on CO2/cap

• Increase x (GDP/cap) by one unit, then the y (CO2/cap) will

increase by 0.24 units

• This is the main thing we care about: if x changes, how does y
change. Useful to think about this as the partial derivitive

• Units: In order to interpret β1 correctly, we need to pay
attention to units!

• x is measured in $1000, while y is measured in tons. Therefore

4x = 1($1000)→ 4y = 0.24 tons

• I.e. β1 = 4y
4x measured in tons/$1000
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Linear Relationships

CO2/cap = 0.75 + 0.24 GDP/cap

β0 is the intercept parameter

• Reflects level of emissions for a country with GDP of zero

• This doesn’t mean much, no country has an actual GDP of

zero

• In many (most) cases β0 does not have a meaningful

interpretation

• β0 has the units of the y variable (tons)
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Logarithmic Relationships

EEP 118 / IAS 118 – Introductory Applied Econometrics Elisabeth Sadoulet 
2016 - Handout # 2 
 
A linear relationship: CO2 emission per capita and GDP/capita in 2011 
   (Source: World Bank Development Indicators) 

  
  
 
 A logarithmic relationship:  Human Development Index and GDP/capita 
(Source: UNDP: Human Development Report, 2007) 

   

A quadratic relationship: The Kuznets curve (Source: UNDP: Human 
Development Report, 2007) 

 
 
 
An exponential relationship:  China GDP/capita over time (Source: World 
Bank data on line) 

 

y = 0.2411x + 0.7564
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y= – 0.52 + 0.144log(x) 

y	=	exp(4.19	+	0.071	t)	
 
where	t	=	year	–	1960 

y = β0 + β1log(x)→ HDI = −0.52 + 0.14log(GDPpc)

Good model for relationships that experience rapid growth early,

but there is saturation at a certain level
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Logarithmic Relationships

How do we think about the marginal effect (remember ∂ln(x)
∂x = 1

x ):

∆HDI = 0.14∆log(GDP/c) ≈ 0.14 · ∆GDP/cap
GDP/cap

Now suppose the following

∆logGDP/cap = 0.10

⇒∆GDP/cap
GDP/cap

= 0.10

⇒∆HDI = 0.14 ∗ 0.10 = 0.014

So, here we would say that a 10% increase in GDPpc leads to an

increase of 0.014 HDI points
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Logarithmic Relationships

General rule for Lin-log models:

• Interpret β as a 1% increase in x will lead to a β/100 unit

increase in y

• A useful way to remember this is that in general when you see

”log” you should think percent
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Exponential Relationships

EEP 118 / IAS 118 – Introductory Applied Econometrics Elisabeth Sadoulet 
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A linear relationship: CO2 emission per capita and GDP/capita in 2011 
   (Source: World Bank Development Indicators) 

  
  
 
 A logarithmic relationship:  Human Development Index and GDP/capita 
(Source: UNDP: Human Development Report, 2007) 

   

A quadratic relationship: The Kuznets curve (Source: UNDP: Human 
Development Report, 2007) 

 
 
 
An exponential relationship:  China GDP/capita over time (Source: World 
Bank data on line) 
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log y = β0 + β1x

log(GDPpc) = 4.19 + 0.07t
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Exponential Relationships

How do we think about marginal effects:

∆y
y

= β1∆x

In our example:

log(GDP/cap) = 4.19 + 0.071t

∆t = 1→ ∆ log GDP/c = 0.07

If t changes by 1 units, then log GDP/cap changes by 7%
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Exponential Relationships

General rule for log-lin models:

• Interpret β as a 1 unit increase in x will lead to a β ∗ 100
percent increase in y

• As before, for the variable that is in ”log” you should think

percent
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Log-log Relationships

What if we have both variables in log form? For example:

log(y) = β0 + β1log(x)

log( f ood) = β0 + β1log(income)

Let’s look at the marginal effect:

∆Food
Food

= β1
∆income
income

Question: How do we interpret this?

14 / 30



Log-log Relationships

∆Food
Food

= β1
∆Income
Income

Question: How do we interpret this?

∆Food
Food

∆Income
Income

= β1

• So, β1 is the income elasticity of food consumption

• That is, a 1% increase in income will lead to a β1 percent

increase in food conusmption

• Both variables are in logs, so we think about both variables in

terms of percent change
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Quadratic Relationships

We’ve drawn the line:

y = β0 + β1x + β2x2 ⇒ Gini = −70 + 29x− 1.84x2
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Quadratic Relationships

y = β0 + β1x + β2x2

GINI = β0 + β1x + β2x2

GINI = −70 + 29x− 1.84x2

• Want to know the shape (concave up or concave down) : β2

negative concave down, and β2 positive concave up

• Need to retrieve the marginal effect

∆y = β1∆x + 2β2x∆x

= (β1 + 2β2x)(∆x)

Note that the marginal effect changes depending on the starting

value of x
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Quadratic Relationships

Next we may also want to find the turning point:

β1 + 2β2x = 0

x = − β1

2β2
=

29.06
2(−1.84)

≈ 8

Interpreting a quadratic is a little tricky - in order to state the

marginal effect of increasing x on y we need to choose a starting

value of x. Typically we choose the mean value of x
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Functional forms and Marginal Effects Overview

This Table (Table 2.3 in Wooldridge) is meant to provide a
summary of the various functional forms and the associated β
interpretations (found on page 5 of notes).

Model DepVar Ind. Var ∆y relates to ∆x? Interpretation

Linear y x ∆y = β1∆x ∆y = β1∆x
Logarithmic y log(x) ∆y = β1

∆x
x ∆y = (β1/100)%∆x

Exponential log(y) x
∆y
y = β1∆x %∆y = (100β1)∆x

Log-Log log(y) log(x) ∆y
y = β1

∆x
x %∆y = β1%∆x

Ex: %∆y = (100β1)∆x - Read this as ”ŷ increases by 100 ∗ β1% for a

one unit increase in x.”
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Example Interpreting Marginal Effects

Suppose you’ve collected data on household gasoline consumption

(gallons) in the Bay Area and gas prices ($ per gallon), and you

estimate the following model:

log(gasoline) = 12− 0.21price

According to the model, how does gas consumption change when

price increases by $1?
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Example Interpreting Marginal Effects

Suppose you’ve collected data on household gasoline consumption

(gallons) in the Bay Area and gas prices ($ per gallon), and you

estimate the following model:

log(gasoline) = 12− 0.21price

According to the model, how does gas consumption change when

price increases by $1?

If price increases by $1, then predicted gasoline consumption will

decrease by 21%
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Example Interpreting Marginal Effects

In a strange (but real) example, a researcher used scanner data

from a national grocery store to investigate how chicken

consumption was affected by gas prices. Specifically, she looked at

the share of chicken purchases that were made while the chicken

was on sale. The following model was estimated:

log(chickenshare) = 0.83 + 0.491 log(gasprice)

How does chickenshare change if gas prices rise by 2%?
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Example Interpreting Marginal Effects

In a strange (but real) example, a researcher used scanner data

from a national grocery store to investigate how chicken

consumption was affected by gas prices. Specifically, she looked at

the share of chicken purchases that were made while the chicken

was on sale. The following model was estimated:

log(chickenshare) = 0.83 + 0.491 log(gasprice)

How does chickenshare change if gas prices rise by 2%?

This is a log-log model, so if the price of gas increases by 2%, then

the predicted share of chicken sold on sale increases by 0.98%.

%∆y = 0.491 ∗ 2% = 0.98%
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Example Interpreting Marginal Effects

Suppose you’ve collected data on CEO salaries (hundred thousand

$) and annual firm sales (million $), and you estimate the following

model:

salary = 2.23 + 1.1 log(sales)

According to the model, how does salary change if annual firm

sales increase by 10%?
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Example Interpreting Marginal Effects

salary = 2.23 + 1.1 log(sales)

According to the model, how does salary change if annual firm

sales increase by 10%?

Sol. If annual firm sales increase by 10%, the model predicts that

CEO salary increases by $11,000.

If annual firm sales increase by 10%, then we know %∆x = 10.

∆y = (β1/100)%∆x

We can plug this and our estimate of β1 into the formula from the

table to see that ∆y = 1.1
100 ∗ 10 = 0.11. Since the units of CEO

salaries is $100,000, an increase of 0.11 units is an increase of

$11,000.
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Populations and Samples

An important distinction in this class will be between the

population and a sample

• We distinguish between the population (the universe of

adults) and a sample (the subset of this population that you

observe in your data)

• The population at large has a distribution for each variable of

interest: educ, income, number of cars,...

• A random draws of an single observation gives us a random

variable from this true distribution found in the population. In

other words a random variable is a number that is taken from

some set of possible outcomes. It is the value of a

characteristic (age, education) of an observation (firm,

household, city) drawn randomly
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Stat Review: Random Variables
Random variables are numbers that are taken from a distribution

of possible outcomes. A fundamental way to describe a random

variable is through its probability distribution function.

Discrete random variable pdf:

EEP/IAS 118 - Introductory Applied Econometrics
Spring 2017

Lane and Ramirez Ritchie
Section Handout 1

Table 2: Data in Long Format

ID Year Income
1. 1 97 1000
2. 1 98 2000
3. 2 97 4320
4. 2 98 5000

Random variables and their probability distributions: In essence, a random variable is a number that is
taken from some distribution of possible outcomes. It can be discrete where there are a finite number of
possible values (number of completed years of school) or continuous where there are infinite possible
values (a person’s height). Once a random variable is drawn from the distribution, it becomes the
realization of a random number.

Why do we care about random variables? Let’s start with an example from physics Dx = vavgDt.
This is an example of a deterministic relationship, if we know the average velocity (vavg) and the time
that has an object has traveled (t), we know the change in it’s position (Dx) with certainty. There are
few (if any!) relationships like this in economics. If we know someone’s education level and gender,
we may have a good sense of their expected wages, but we don’t have a formula for their exact wages.
Thus, we treat wages, education, and gender as random variables, and explain their relationships using
statistical techniques.

Any discrete random variable can be completely described by detailing the possible values it
takes, as well as the associated probability that it takes each value. The probability density function
(pdf) of X summarizes the information concerning the possible outcomes of X and the associated prob-
abilities.

f (xj) = P(X = xj), j = {1, 2, 3, 4, 5, ...k}
f (0) = 0.20 ; f (1) = 0.44 ; f (2) = 0.36

We can define a probability density function for continuous variables as well. However it doesn’t
make sense to talk about the probability that a continuous random variable takes on a particular value,3

rather the pdf computes the probability of events involving a certain range. The probability that X takes
on a value within the interval [a, b] is given by

Pr(a < X < b) =
Z b

a
x f (x)dx

3”The idea is that a continuous random variable X can take on so many possible values that we cannot count them or match
them up with the positive integers, so logical consistency dictates that X can take on each value with probability zero” (Woolridge
p.717)

3

22 / 30



Stat Review: Random Variables
Continuous variable (pdf):
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Table 2: Data in Long Format

ID Year Income
1. 1 97 1000
2. 1 98 2000
3. 2 97 4320
4. 2 98 5000

Random variables and their probability distributions: In essence, a random variable is a number that is
taken from some distribution of possible outcomes. It can be discrete where there are a finite number of
possible values (number of completed years of school) or continuous where there are infinite possible
values (a person’s height). Once a random variable is drawn from the distribution, it becomes the
realization of a random number.

Why do we care about random variables? Let’s start with an example from physics Dx = vavgDt.
This is an example of a deterministic relationship, if we know the average velocity (vavg) and the time
that has an object has traveled (t), we know the change in it’s position (Dx) with certainty. There are
few (if any!) relationships like this in economics. If we know someone’s education level and gender,
we may have a good sense of their expected wages, but we don’t have a formula for their exact wages.
Thus, we treat wages, education, and gender as random variables, and explain their relationships using
statistical techniques.

Any discrete random variable can be completely described by detailing the possible values it
takes, as well as the associated probability that it takes each value. The probability density function
(pdf) of X summarizes the information concerning the possible outcomes of X and the associated prob-
abilities.

f (xj) = P(X = xj), j = {1, 2, 3, 4, 5, ...k}
f (0) = 0.20 ; f (1) = 0.44 ; f (2) = 0.36

We can define a probability density function for continuous variables as well. However it doesn’t
make sense to talk about the probability that a continuous random variable takes on a particular value,3

rather the pdf computes the probability of events involving a certain range. The probability that X takes
on a value within the interval [a, b] is given by

Pr(a < X < b) =
Z b

a
x f (x)dx

3”The idea is that a continuous random variable X can take on so many possible values that we cannot count them or match
them up with the positive integers, so logical consistency dictates that X can take on each value with probability zero” (Woolridge
p.717)

3
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Cumulative Distribution Function: When computing probabilities for continuous random vari-
ables, it is easiest to work with the cumulative distribution function (cdc). The CDF of a random variable
is defined as:

F(x) = P(X  x)

For discrete random variables, this is obtained by summing the pdf over all values xj such that xj  x.
For a continuous random variable, F(x) is the area under the pdf, f, to the left of the point x. For a
continuous random variable, F(x) is the area under the pdf to the left of the point x. Two important
properties of cdf’s that we will use later in the course:

P(X > c) = 1 � F(c)
P(a < X  b) = F(b) � F(a)

Joint Distributions, Conditional Distributions, and Independence: Let X, and Y be discrete random
variables. Then (X,Y) have a joint distribution, which can be described by the joint probability density
function of (X,Y):

fX,Y = P(X = x, Y = y)

Two variables are independent if the joint PDF is equal to the product of the individual variables’ pdf.

fX,Y = fX(x) fY(y)

P(X = x, Y = y) = P(X = x)P(Y = y)

We might also be interested in establishing how X varies with different values of Y: this is the conditional
distribution of Y given X, which is described by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)

b. Example

Take the following example of a survey of 652 women applying for a job at a factory. Two pieces of
information that were collected include whether a woman was the head of her household and how
much education she had completed. Look below at the following charts:

Head of household
Yes No

Incomplete primary 30 124
Primary only 44 192

Secondary 123 139

Head of household
Yes No

Incomplete primary 0.05 0.19
Primary only 0.07 0.29

Secondary 0.19 0.21

Note that the chart on the left gives the total number of women who fit in each cell of the chart. The
sum of these cells is 652. From this chart, we could then calculate the chart on the right which tells us
what proportion of women fall into each category. Each cell of the chart on the right provides us with
the joint probability of two events happening.

4
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Stat Review: Random Variables
The cumulative distribution function is another useful way to

visualize a random variable:
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Stat Review: Two Random Variables

• If we have two discrete random variables X and Y, we can

define the joint probability density function of (X,Y):

fX,Y = P(X = x, Y = y)

• Two variables are independent if the joint PDF is equal to

the product of the individual variables’ pdf.

P(X = x, Y = y) = P(X = x)P(Y = y)

• The conditional distribution of Y given X, which is described

by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)
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Stat Review: Two Random Variables

Let’s do an example using survey data:
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Cumulative Distribution Function: When computing probabilities for continuous random vari-
ables, it is easiest to work with the cumulative distribution function (cdc). The CDF of a random variable
is defined as:

F(x) = P(X  x)

For discrete random variables, this is obtained by summing the pdf over all values xj such that xj  x.
For a continuous random variable, F(x) is the area under the pdf, f, to the left of the point x. For a
continuous random variable, F(x) is the area under the pdf to the left of the point x. Two important
properties of cdf’s that we will use later in the course:

P(X > c) = 1 � F(c)
P(a < X  b) = F(b) � F(a)

Joint Distributions, Conditional Distributions, and Independence: Let X, and Y be discrete random
variables. Then (X,Y) have a joint distribution, which can be described by the joint probability density
function of (X,Y):

fX,Y = P(X = x, Y = y)

Two variables are independent if the joint PDF is equal to the product of the individual variables’ pdf.

fX,Y = fX(x) fY(y)

P(X = x, Y = y) = P(X = x)P(Y = y)

We might also be interested in establishing how X varies with different values of Y: this is the conditional
distribution of Y given X, which is described by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)

b. Example

Take the following example of a survey of 652 women applying for a job at a factory. Two pieces of
information that were collected include whether a woman was the head of her household and how
much education she had completed. Look below at the following charts:

Head of household
Yes No

Incomplete primary 30 124
Primary only 44 192

Secondary 123 139

Head of household
Yes No

Incomplete primary 0.05 0.19
Primary only 0.07 0.29

Secondary 0.19 0.21

Note that the chart on the left gives the total number of women who fit in each cell of the chart. The
sum of these cells is 652. From this chart, we could then calculate the chart on the right which tells us
what proportion of women fall into each category. Each cell of the chart on the right provides us with
the joint probability of two events happening.

4

• What is joint probability that a random person is a head of

household and did NOT complete primary school?
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Stat Review: Two Random Variables

Let’s do an example using survey data:
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Cumulative Distribution Function: When computing probabilities for continuous random vari-
ables, it is easiest to work with the cumulative distribution function (cdc). The CDF of a random variable
is defined as:

F(x) = P(X  x)

For discrete random variables, this is obtained by summing the pdf over all values xj such that xj  x.
For a continuous random variable, F(x) is the area under the pdf, f, to the left of the point x. For a
continuous random variable, F(x) is the area under the pdf to the left of the point x. Two important
properties of cdf’s that we will use later in the course:

P(X > c) = 1 � F(c)
P(a < X  b) = F(b) � F(a)

Joint Distributions, Conditional Distributions, and Independence: Let X, and Y be discrete random
variables. Then (X,Y) have a joint distribution, which can be described by the joint probability density
function of (X,Y):

fX,Y = P(X = x, Y = y)

Two variables are independent if the joint PDF is equal to the product of the individual variables’ pdf.

fX,Y = fX(x) fY(y)

P(X = x, Y = y) = P(X = x)P(Y = y)

We might also be interested in establishing how X varies with different values of Y: this is the conditional
distribution of Y given X, which is described by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)

b. Example

Take the following example of a survey of 652 women applying for a job at a factory. Two pieces of
information that were collected include whether a woman was the head of her household and how
much education she had completed. Look below at the following charts:

Head of household
Yes No

Incomplete primary 30 124
Primary only 44 192

Secondary 123 139

Head of household
Yes No

Incomplete primary 0.05 0.19
Primary only 0.07 0.29

Secondary 0.19 0.21

Note that the chart on the left gives the total number of women who fit in each cell of the chart. The
sum of these cells is 652. From this chart, we could then calculate the chart on the right which tells us
what proportion of women fall into each category. Each cell of the chart on the right provides us with
the joint probability of two events happening.

4

• What is joint probability that a random person is a head of

household and did NOT complete primary school?

f (Incomplete, yes) = 0.05
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Stat Review: Two Random Variables

Let’s do an example using survey data:
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Cumulative Distribution Function: When computing probabilities for continuous random vari-
ables, it is easiest to work with the cumulative distribution function (cdc). The CDF of a random variable
is defined as:

F(x) = P(X  x)

For discrete random variables, this is obtained by summing the pdf over all values xj such that xj  x.
For a continuous random variable, F(x) is the area under the pdf, f, to the left of the point x. For a
continuous random variable, F(x) is the area under the pdf to the left of the point x. Two important
properties of cdf’s that we will use later in the course:

P(X > c) = 1 � F(c)
P(a < X  b) = F(b) � F(a)

Joint Distributions, Conditional Distributions, and Independence: Let X, and Y be discrete random
variables. Then (X,Y) have a joint distribution, which can be described by the joint probability density
function of (X,Y):

fX,Y = P(X = x, Y = y)

Two variables are independent if the joint PDF is equal to the product of the individual variables’ pdf.

fX,Y = fX(x) fY(y)

P(X = x, Y = y) = P(X = x)P(Y = y)

We might also be interested in establishing how X varies with different values of Y: this is the conditional
distribution of Y given X, which is described by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)

b. Example

Take the following example of a survey of 652 women applying for a job at a factory. Two pieces of
information that were collected include whether a woman was the head of her household and how
much education she had completed. Look below at the following charts:

Head of household
Yes No

Incomplete primary 30 124
Primary only 44 192

Secondary 123 139

Head of household
Yes No

Incomplete primary 0.05 0.19
Primary only 0.07 0.29

Secondary 0.19 0.21

Note that the chart on the left gives the total number of women who fit in each cell of the chart. The
sum of these cells is 652. From this chart, we could then calculate the chart on the right which tells us
what proportion of women fall into each category. Each cell of the chart on the right provides us with
the joint probability of two events happening.

4

• What is the conditional probability that a randomly drawn

head of household did NOT complete primary school?
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Stat Review: Two Random Variables

Let’s do an example using survey data:
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Cumulative Distribution Function: When computing probabilities for continuous random vari-
ables, it is easiest to work with the cumulative distribution function (cdc). The CDF of a random variable
is defined as:

F(x) = P(X  x)

For discrete random variables, this is obtained by summing the pdf over all values xj such that xj  x.
For a continuous random variable, F(x) is the area under the pdf, f, to the left of the point x. For a
continuous random variable, F(x) is the area under the pdf to the left of the point x. Two important
properties of cdf’s that we will use later in the course:

P(X > c) = 1 � F(c)
P(a < X  b) = F(b) � F(a)

Joint Distributions, Conditional Distributions, and Independence: Let X, and Y be discrete random
variables. Then (X,Y) have a joint distribution, which can be described by the joint probability density
function of (X,Y):

fX,Y = P(X = x, Y = y)

Two variables are independent if the joint PDF is equal to the product of the individual variables’ pdf.

fX,Y = fX(x) fY(y)

P(X = x, Y = y) = P(X = x)P(Y = y)

We might also be interested in establishing how X varies with different values of Y: this is the conditional
distribution of Y given X, which is described by the conditional probability density function :

f(Y|X)(y|x) = P(Y = y|X = x)

b. Example

Take the following example of a survey of 652 women applying for a job at a factory. Two pieces of
information that were collected include whether a woman was the head of her household and how
much education she had completed. Look below at the following charts:

Head of household
Yes No

Incomplete primary 30 124
Primary only 44 192

Secondary 123 139

Head of household
Yes No

Incomplete primary 0.05 0.19
Primary only 0.07 0.29

Secondary 0.19 0.21

Note that the chart on the left gives the total number of women who fit in each cell of the chart. The
sum of these cells is 652. From this chart, we could then calculate the chart on the right which tells us
what proportion of women fall into each category. Each cell of the chart on the right provides us with
the joint probability of two events happening.

4

• What is the conditional probability that a randomly drawn

head of household did NOT complete primary school?

f (Incomplete|yes) = 30/197 = 0.15
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Features of Probability Distributions

• The expected value of X:

E(X) = x1 f (x1) + x2 f (x2) + · · ·+ xk f (xk) =
k

∑
j=1

xj f (xj)

If X is continuous

E(X) =
∫ +∞

−∞
x f (x)d(x)

• The variance of X:

Var(X) = E[(X− E(X))2]

• The standard deviation of X

sd(X) =
√

Var(X)
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Sample Properties

We can never know the real pdf or cdf of the population at large,

instead we can only infer things about the population based on the

samples we do observe

We can calculate the statistical properties of these samples:

• Sample Mean:

X̄n =
1
n

n

∑
i=1

Xi

• Sample Variance:

S2 =
1

n− 1

n

∑
i=1

(Xi − X̄n)
2

These two terms are sample estimators for the true

population sample. What an estimator is and its properties

will be a key concept in this class!
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Sample Properties

The goal in calculating these sample properties is that they can

inform us about the analogous properties found in the population

• The sample mean is informative about the population mean

• The sample variance is information about the population

variance

• The sample correlation between two variables is informative

about the population correlation

The problem is that the value of the sample statistic will not be

equal to it’s analogue in the population.

• How do we deal with this problem?
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Sample Properties: Law of Large Numbers

• In small samples, the sample mean can be quite different from
the true population mean

• For example, if I roll a five and a six on a die the sample mean

will be 1
2 (6 + 5) = 5.5, even when we know the true

population expected value of a die roll is 3.5:

E(X) = 1
( 1

6

)
+ 2

( 1
6

)
+ 3

( 1
6

)
+ 4

( 1
6

)
+ 5

( 1
6

)
+ 6

( 1
6

)
= 3.5

• Usefully, the law of large numbers says that if we draw a
sample consisting of n realizations of our random variable, and
take the average, this sample mean will approach the
population mean as n approaches infinity.

• This means that if I roll a die more and more, my sample mean

will approach the true population mean of 3.5
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