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Today

• Simple Regression Framework

• OLS Derivation

• Properties of β̂

• R2

• Assignments:

• Problem Set 1 Due on Monday

• First Quiz on Tuesday

2 / 26



Economic Model
An economic model is a equation that describes relationships. For

example, we can try to describe participation in crime:

y = f (x1, x2, x3, x4, · · · , x6)

where y =hours spend in criminal activity, x1 =police enforcement,

x2 =hourly wage in legal employment,..., x6 =age.

We turn this economic model into a econometric model by

assigning a functional form (linear):

crime︸ ︷︷ ︸
y

= β0 + β1︸︷︷︸
parameter

en f orcement + β2wage︸ ︷︷ ︸
x

+ · · ·+ β6age + u

• Note that u here contains all the unobserved variables (e.g.

family background, earnings from crime) that we cannot

include in the model.
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Population Regression Function

Consider a version of this model where crime (y) is only a function

of wage in legal activity (x):

y = f (x, u) = β0 + β1x + u

• Let us assume this is the ”true data generating process”

• u = y− β0 − β1x is the error term. We make two important
assumptions on u

1 E(u) = 0 - this means that across the entire population the

average residual is equal to 0. This is essentially just redefining

the unobservable to be distributed around 0

2 E(u|x) = 0 - this assumption says that u is “mean

independent” of x
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Population Regression Function

Assumption 2: E(u|x) = 0 - this assumption says that u is

“mean independent” of x

• Implies that cov(u, x) = 0

E(u|x) = 0→ Cov(u, x) = 0

Cov(u, x) = E(ux)− E(u)E(x)

= E(ux)

= 0

• We will examine the importance of this assumption in more

detail later (and it is critically important)
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Population Regression Function

Note that we are making these assumptions on the true underlying

model. Therefore, we can never directly test these assumptions

• We can summarize these conditions with: E(u|x) = E(u) = 0

• This assumption allows us to define a linear population

regression function:

E(y|x) = β0 + β1x
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Population Regression Function

E(y|x) = β0 + β1x

The PRF describes how the average value of y changes with x.

Note, the above picture isn’t linear, but for this class we will

assume it is.
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Regression with a Sample

The above example is done with a population, which we almost

never observe. Instead, we work with samples.

• Goal is to approximate the PRF using a sample regression

function (SRF): ŷ = β̂0 + β̂1x
• y = β̂0 + β̂1x + û = ŷ + û is our estimated model. The

”hats” indicate that these are estimates of some true value or
parameter.

• ŷ is our best guess at the true E(y|x)
• β̂ is our best guess at the true relationship between x and y
• ûi is the residual and is the deviation between the real

observed yi and ŷi. That is : ûi = yi − ŷi
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Regression with sample
The PRF and SRF will (almost) never be the same!
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Deriving OLS

How do we actually go about estimating the model, choosing the

best line to fit the data (i.e. finding our best guess for the β j)?

• Approach should seek to minimize the errors (ûi) between our

model prediction and the actual data

• A couple of options for how to do this:

1 Least squares: Minimize sum of square distance between our

data (xi, yi) and the line (ŷi) - i.e. minimize the errors

Min ∑
i
(yi − ŷi)

2

2 Least absolute error: Minimize the sum of the absolute value

of the errors

Min ∑
i
|yi − ŷi|
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Deriving OLS

For various reasons, Least squares is generally the preferred

method. So the goal is to choose the β j that accomplishes:

Min ∑
i
(yi − ŷi)

2

How do we do this: take the derivative of the function above w.r.t.

β̂ j and set equal to zero. Then solve for β j (remember calculus

and critical values)
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Deriving OLS
Let’s define W, plugging in our model for ŷi:

W =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(yi − β̂0 − β̂1xi)
2

We’d like to choose β̂0 and β̂1 so that W is as small as possible:

min
β̂0,β̂1

W =
n

∑
i=1

(yi − β̂0 − β̂1xi)
2

Taking the first order conditions (partial derivatives):

∂W
∂β̂0

= −
n

∑
i=1

2(yi − β̂0 − β̂1xi) = 0 (1)

∂W
∂β̂1

= −
n

∑
i=1

2(yi − β̂0 − β̂1xi)xi = 0 (2)

12 / 26



Deriving OLS

These equations can be solved for β̂0 and β̂1.

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
sxy

s2
x
=

cov(x, y)
var(x)

Our best choice of β̂1 is given by the covariance of x and y divided

by the variance of x. Any intuition for why this might make sense?

β̂0 = ȳ− β̂1 x̄

The best choice of β0 - the intercept - is the average of y minus

our previously estimated β1 times the average x

• You can (will) calculate these by hand in excel. However, in

the future programs like Stata will calculate them for you
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Deriving OLS

Data on CO2 (y) and GDP (x):

1 What is β̂1 ?

2 What is β̂0 ?
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Deriving OLS

1 β̂1 = 93.2
313.4 = 0.297 tons/$1000

2 β̂0 = 9.3− 0.297 ∗ (25.2) = 1.843 tons

Don’t forget units!
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Summary: β0, β1

The equations of β0 and β1:

β̂1 =
sxy(x, y)

sx2
=

cov(x, y)
var(x)

=
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

β̂0 = ȳ− β̂1 x̄

As we saw, these are derived by minimizing the sum of squared

errors (û). This process is called Ordinary Least Squares (OLS).

OLS has some nice estimation properties (e.g. it is the least

variance estimator under certain conditions), which is why we use

it.

• Don’t worry about doing the full derivation
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Interpreting β̂ - Sign, Significance, Size

When asked to ”interpret your results” you should check 3 things:

1 Sign:

• What sign did you expect the estimated parameter to have?

Why? Does your estimate have this sign (i.e. are you surprised

or reassured by your results)?

2 Significance:

• Is the estimate statistically different from zero? What is the

t-statistic of this hypothesis?

• Don’t worry about this for now, we will deal with this in more

detail later in the course.

3 Size:

• How do changes in this variable affect the dependent variable

according to your estimation? Is this an economically

meaningful effect size?
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Interpreting β̂ vs. β

• We interpret β1 as the marginal effect (change of one unit) of

our x variable (e.g. education) on the EXPECTED value of

the y (denoted E(y), E(wage)) in the population. Note that

without the entire population of data, we never actually see

β1.

• We interpret β̂1 as the marginal effect of our x variable (e.g.
education) on PREDICTED y (denoted ŷ, ˆwage). This is an
estimated parameter, for which we get a value from our data.

• You will need to use the word predicted when interpreting β̂
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Example Interpretation

Example: Exercise 2.4 Woolridge: Let’s examine a regression of

baby birthweight on number of daily cigarettes smoked by the

mother:

b̂wght = 119.77− 0.514cigs

1 Interpret the coefficient on cigs.

2 What is the predicted birthweight when cigs = 0?

3 To predict a birthweight of 125, what would cigs have to be?
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Example Interpretation

b̂wght = 119.77− 0.514cigs

1 Interpret the coefficient on cigs.: Sign: The coefficient on cigs
is negative, as we would expect. Significance: Leave for now,

but assume it is. Size: Smoking an additional cigarette per

day is associated with a 0.514 ounce decrease in predicted

birth weight - this seems important

2 What is the predicted birthweight when cigs = 0? Predicted

birth weight is 119.77 ounces (the intercept)

3 To predict a birthweight of 125, what would cigs have to be?

Solve for cigs and plug in 125 for birthweight:

cigs = (125− 119.77)/(−0.524) ≈ −10
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Example Interpretation: β̂0

How do we interpret β̂0?

• This is the best prediction of ŷ when all x are equal to zero

b̂wght = 119.77− 0.514cigs

• Here, 119.77 is the predicted birthweight for a mother who

does not smoke any cigarettes

• In many cases, β̂0 does not mean very much. For instance if

the regression were income = β0 + β1educ, then β̂0 would be

predicted income for someone without any education -

something that we probably don’t see in the data

• To see if β0 is meaningful, think about what it means when

all x = 0. If this makes sense in the context, β̂0 may be useful
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Properties of β̂

There are several useful facts about our estimated model

1 We have that the regression line goes through the mean of

the data:

1
n ∑

i
(yi − β̂0 + β̂1xi) = 0

ȳ = β̂0 + β̂1 x̄

2 The sum of our estimated errors û is zero:

1
n ∑

i
ûi = 0

3 Every real data point will be equal to the predicted ŷ plus the

estimated residual û
yi = ŷi + ûi
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Goodness of fit: R2

The R2 is a useful measure of how well our model ”fits” or

explains the data. This can be informative about whether our

specified model is close to the true relationship between two

variables. For example:
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If we fit a simple linear model to this line, it would be poor fit.

The low R2 would help indicate this fact.
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Goodness of fit: R2

Three main terms to define to understand the R2 and how to

calculate it:

1 Sum of Square Total (SST) = ∑n
i (yi − ȳ)2

• Measure of the total variability of y in our sample data

2 Sum of Squares Explained (SSE) =∑n
i (ŷi − ȳ)2

• This is a measure of the total variability of the predicted ŷ

3 Sum of Squared Residuals (SSR) = ∑n
i (yi − ŷ)2

• This is a measure of the total variability of our error term (ûi)

• Note that SST = SSE + SSR (remember property 3)
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Goodness of fit: R2

• The R2 is defined: R2 = SSE
SST = SSE

SSE+SSR = 1− SSR
SST

• You can think of the R2 as how much of the total sample

variation in y is explained by our model

• R2 is always less than 1. Being closer to one indicates a better

model fit

• Having a model that fits the data better does not necessarily
mean it is a “good” model - what makes the model good or
bad depends on what you want to use it for:

• If you are interested in prediction, maximizing R2 is somewhat

sensible (but you don’t want to “over-fit” the model)

• If you are interested in causality or even just uncovering a

relevant correlation, then R2 should not be your primary

concern
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Goodness of fit: R2

1 What is the R2?
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Goodness of fit: R2

1 R2 = 1− SSR
SST = 1− 44.5

183.1 = 0.757
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