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This Lecture

Topics

• Review: Estimators

• The estimator β̂

• Simple Regression

• Multiple Regression

Assignments

• First Quiz tomorrow, beginning of class

• Problem Set 2 Posted - Due on Wednesday July 5th
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Correction from Last Class

I forgot to give you the formula for these two sample properties

that form β̂:

• Sample Variance:

s2
x =

∑i(Xi − E(X))2

N − 1

• Sample Covariance:

sxy
∑i(Xi − E(X))(Yi − E(Y))

N − 1

We divide by N − 1 to make these unbiased estimators of the

population variance and covariance
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Random Samples and Estimators

Definition: If X1, X2 · · · , Xn are independent random variables

with a common probability density function, then {X1, · · ·Xn} is

said to be a random sample from the population represented by

that same PDF.

The random nature of X1, X2 · · · , Xn in the definition of random

sampling illustrates that many different outcomes are possible

before the sampling is actually carried out.

Example: Obtaining data on family income from a sample of

n = 100 families in the US: the incomes you observe will usually

differ for each different sample of 100 families.
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Population Parameters

If X is a random variable, the expected value (or expectation) of X,

is the weighted average of all possible values of X.

E(X) = µ =
k

∑
j=1

xj f (xj)

If X is a random variable, the variance tells us the expected

distance from X to its mean:

Var(X) = σ2 = E[(X− E(X))2]

Both of these are population parameters.
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Sample Estimates

We never actually have the entire population of data to work with.

We do however have the ability to collect information from a

representative sample of the population.

We can proceed to calculate the average and variance in a sample,

and say this is the best estimate for the average and variance in

the population.
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Sample Estimator

Recall our population has mean µ and variance σ2
X. Then

• An estimator of µ is the sample mean X̄ =
1
n ∑i Xi

• An estimator of σ2
X is s2

X =
1

n− 1 ∑i(Xi − X̄)2

When we collect a specific sample from this population, we can get

a particular estimate for X̄ and s2
X

Note: I will sometimes write σ̂2
X or s2

X, but they mean the same

thing. (A “hat” indicates that something is an estimator)
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Properties of Estimators

Remember that estimators themselves are random variables

because they depend on a random sample: as we obtain different

random samples from the population, the values of X̄ can change.

Hence they have a certain probability distribution, with a certain

mean and a certain variance/ standard deviation.

• We can see this if we take several samples from the same

population and calculate X̄ for each one
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Properties of Estimators

E[X̄] = E[
1
n ∑

i
Xi] =

1
n

E[∑
i

Xi] =
1
n

nE[Xi] =
1
n

n(µ) = µ

Var[X̄] = Var

[
1
n ∑

i
Xi

]
=

1
n2 Var

[
∑

i
Xi

]
=

1
n2 nVar[Xi] =

σ2
X
n

Sd[X̄] =
√
(Var[X̄]) =

σX√
n

BUT we don’t know σX because this is a population parameter!

So how can get the standard deviation of our estimator?
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Standard Errors of Estimators

So, instead we use our estimator for σX,

sX =

√
1

n− 1 ∑n
i (xi − x̄)2.

We call this term the standard error - essentially the standard

deviation of our estimator once we replaced the population σX with

the sample estimator sX

Se[X̄] =
sX√

n
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Summary: X as continuous variable

We have a random sample, X1 · · ·Xn

Symbol Formula

Population parameters µ ∑k
j=1 xj f (xj)

σ2
X E[(X− E(X))2]

σX
√

E[(X− E(X))2]

Sample estimators X̄ 1
n ∑i Xi

s2
X

1
n−1 ∑i(Xi − X̄)2

sX
√

1
n−1 ∑i(Xi − X̄)2

Estimator properties E(X̄) µ

Var(X̄)
σ2

X
n

Sd(X̄) σX√
n

SE of estimator Se(X̄) sX√
n
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Binary Random Variable

If the random variable X can only take on one of two values

{0, 1}, we call this a binary random variable. The calculation of

the mean of a binary random variable is the same, but we denote

its value as p standing for proportion

• p must be between zero and one, and we can interpret it as

the probability that X takes on the value 1

The primary difference to keep in mind with a binary random

variable is that the variance is completely defined by p

σ2
X = p(1− p)

That means, that if we know p, then we know both the mean and

the variance / standard deviation of X (contrast with continuous

X where we have both µ and σ)
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Summary: X as binary variable

We have a random sample, X1 · · ·Xn, Xj ∈ {0, 1}

Symbol Formula

Population parameters p ∑k
j=1 xj f (xj)

σ2
X p(1− p)

σX
√

p(1− p)

Sample estimators p̂ 1
n ∑i Xi

s2
X p̂(1− p̂)

sX
√

p̂(1− p̂)

Estimator properties E(X̄) p
Var(X̄) p(1− p)
Sd(X̄)

√
p(1− p)

SE of estimator Se(X̄) sX√
n
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The estimator β̂

Transitioning back to the population model we discussed

previously:

y = β0 + β1x + u

β̂0 and β̂1 are estimators for the parameters β0 and β1. Indeed we

derived a formula for our β’s, this was a rule that assigns each

possible outcome of the sample a value of β. Then, for the given

sample of data we work with, we obtain particular intercept and

slope estimates, β0 and β1.

Recall that because β̂ is an estimator based of a random sample, it

has a standard error of its own.
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The estimator β̂

β̂ is an estimator. Therefore, we want to know it’s properties, in

particular:

• What is E(β̂)? - an important property will be that

E(β̂) = β. Most of econometrics is finding the conditions

under which this is true

• What is Var(β̂)? - will inform us about how far away β̂ could

be from the true population β

To answer either of these questions, we first need to make some

assumptions about the true population model...
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Assumptions of Linear Regression
We make these assumption about the ”true data generating

process”

Model Simple

SLR.1 The population model is linear in parameters y = β0 +

β1x1 + u
SLR.2 {(xi, yi), i = 1 · · ·N} is a random sample from the

population

SLR.3 The observed explanatory variable (x) is not constant:

Var(x) 6= 0
SLR.4 No matter what we observe x to be, we expect the un-

observed u to be zero: E[u|x] = 0
SLR.5 The “error term” has the same variance for any value of

x : Var(u|x) = σ2
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Assumption 1

The population model is linear in parameters y = β0 + β1x1 + u

• Rules out models that have things like: β2 or β1 × β2

• Seems restrictive, but remember we can still include things

like: X2, log(X),
√

X, etc. We can still accommodate most

functional forms
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Assumption 2

{(xi, yi), i = 1 · · ·N} is a random sample from the population

• Relatively straight forward - the data we observe is a true

random sample drawn from the population we care about

• Processes that would NOT be random:

• Calling the first 100 people in the phone book

• Surveying the first 10 people to arrive in class

• Asking for volunteers to to fill out a survey

• Even if we don’t have a true random sample, sometimes we

are okay with that, as this might be the relevant population to

study (e.g. people who apply for a scholarship)
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Assumption 3

The observed explanatory variable (x) is not constant: Var(x) 6= 0

• We need some variation in x in order to even calculate any

value for β̂

• When we only have one x, this assumption is trivial - if we

only observe people with 12 years of education, we won’t be

able to say anything about the effect of education on income
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Assumption 4

The ”mean independence” assumption on the error term

E[u|x] = 0 is probably the most critical assumption we make in

regression.

• This assumption allows us to think about β in causal terms -

i.e. ”the causal effect of one more unit of X’s on expected

value Y”

• Classic example of violating this assumption is regression of
income on education

• IF we could control for all variables that affect income then we

could recover the true effect of education on income

• But we can never observe everything. E.g. we don’t observe

ability which is correlated with education and income which

biases our estimate of educations effect on earnings

• Omitted Variable Bias (OVB) is an example of violating this

assumption.
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Assumption 4
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Assumption 5
The assumption that Var(u|x) = σ2 is called the homoskedasticity

assumption. A violation of this assumption would look like this

(heteroskedasticity):
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What do we get from these assumptions?

Using only assumptions 1 - 4, we can prove that:

1 E(β̂1) = β1

2 E(β̂0) = β0

This means that the mean of our estimators β̂1 and β̂0 are our true

population parameters β1 and β1

• This is good! If we don’t have this, we lose the ability to

assign causality to our β̂ estimates

• The proofs for these results are in the notes, but you don’t

need to know them
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What do we get from these assumptions?

If we add assumption 5, we can also show that:

3 Var(β̂1) = σ2
u/SSTx = σ2

u/(n− 1)s2
x

4 Var(β̂0) =
σ2

u
SSTx

∑i xi
n

NOTE: As before, we don’t know σ2
u (or SSTx) as this is a

population parameters.

• So to calculate this we use an estimator for σ2
u in our formula:

σ̂2
u =

∑i û2
i

n− 2

The primary driver of the variance of β̂ is the size of our residuals

û. Should make intuitive sense: implies the data points are not

tightly packed around the regression line ⇒ the variation in β̂ will

be large as well
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What do we get from these assumptions?

3 Var(β̂1) = σ2
u/SSTx = σ2

u/(n− 1)s2
x

4 Var(β̂0) =
σ2

u
SSTx

∑i xi
n

Ideally we want variance of β̂ to be low - what can we do?

• Increase sample size (n is in the denominator)

• Large variance in x - may seem counter-intuitive, but true

• Reduce the size of σ̂ - we can do this by controlling for many

variables

Note: The standard error of β̂ is:√
Var(β̂) =

σ̂u√
(n− 1)s2

x
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Example: Regression n = 400
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Example: Regression n = 2000

Notice how se(β̂) has dropped
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Example: Regression n = 4000
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Practice: Calculate se(β̂)

How could we calculate se(β̂) if we didn’t see it’s value here (you

know, like on an exam...)?
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Practice: Calculate se(β̂)

se(β̂) = σ̂u√
SSTx

= σ̂u√
(n−1)s2

x

• σ̂2
u = ∑i û2

i
n−2 = SSR

n−2 = 22213.44
1998 = 111.22

• SSTx = (2.088)2 ∗ 1999 = 8715.13

• var(β̂) = σ̂2
u

SSTx
= 111.22

8715.13 = 0.01276

• se(β̂) =
√
(var(β̂) =

√
0.01276 = 0.1130
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Summary: Regression

We have a random sample, X1 · · ·Xn, and A1-A5 are satisfied:

Symbol Formula

Population estimators β0

β1

Sample estimators β̂0 ȳ− β̂1 x̄

β̂1
∑n

i=1(xi−x̄)(yi−ȳ)
∑n

i=1(xi−x̄)2

Estimator properties E(β̂0) β0

E(β̂1) β1

Var(β̂1)
σ2

u
SSTx

Sd(β̂1)
σu√
SSTx

SE of estimator Se(β̂1)
σ̂u√
SSTx

*I don’t show Var(β̂0), Sd(β̂0), or Se(β̂0) because we rarely care
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Multiple Linear Regression: Intro

Up to now, we have dealt with regressions with only one

explanatory variable. In practice, we almost always include many

more explanatory variables. E.g.:

wage = β0 + β1educ + β2experience + u

Why add additional x?

1 Interested in effect of x2 on y
2 We want to remove unobservables from u - remember

everything that affects y that is not specified in our regression
is hidden in u

• Can increase precision of β̂1 and reduce bias (more on this in

the future)

3 Need to account for non-linear relationship (x1 and x2
1)
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Multiple Linear Regression: Interpretation

How do we think about β j now that there are multiple x?

y = β0 + β1x1 + β2x2 + ... + βkxk + u

If we assume that E(u|x1, ..., xk) = 0 then we can write:

E(y|x1, ..., xk) = β0 + β1x1 + β2x2 + ... + βkxk

• Now, β1 measures the partial effect of increase x1 on E(y),
holding x2, ..., xk constant

• I.e, we are “controlling” for x2, .., xk
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Multiple Linear Regression: Interpretation

How do we think about β̂ j now that there are multiple x?

• β̂1 measured the effect on the predicted ŷ of a change in x1

by 1 unit, holding x2, x3, ... fixed

• Ex: “Holding experience and gender fixed, a one year increase

in education leads to a 11.7%
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Multiple Linear Regression: Derivation

How do we go about finding values for β̂0, β̂1, ...β̂k?

• Again we minimize the sum of the squared errors:

min ∑
i
(yi − β̂0 − β̂1xi1 · · · β̂kxik)

2

No easy formula for β̂, but fortunately we have computers

that can solve this*

• Once we do solve, this gives us:

yi = β̂0 + β̂1xi1 + · · ·+ β̂kxik + µ̂ik

*This is why we use matrix notation in advanced courses
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Practice Interpretation

Data on urbanization % (scale 1 to 100), logGDP per capita, and

agriculture productivity (average yield) were used to run this

regression

ûrban = −25.13 + 10.43logGDP + 0.41agprod

1 Interpret the coefficients on logGDP and agprod
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Practice interpretation

ûrban = −25.13 + 10.43logGDP + 0.41agprod

1 Interpret the coefficients on logGDP and agprod
logGDP:

• Sign: There is a positive sign, this makes sense - as a country

gets richer more people move to the city

• Significance: We’ll get here (but let’s assume it is)

• Size: A 1% increase in GDP per capita will cause an increase

in predicted urbanization by 0.1043 percentage points holding

agricultural productivity constant
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Assumptions for Multiple Linear Regression
How do the necessary assumptions change when we have multiple

X ?

Model Multiple

MLR.1 The population model is linear in parameters y = β0 +

β1x1 + · · ·+ βkxk + µ

MLR.2 {(xi1, · · · , xik, yi), i = 1 · · ·N} is a random sample

from the population

MLR.3 No perfect colinearity among observed variables and

Var(xj) 6= 0, j = 1 · · · k
MLR.4 No matter what we observe (xi1, · · · , xik) to be, we ex-

pect the unobserved u to be zero E[u|x1, · · · , xk] = 0
MLR.5 The “error term” has the same variance for any value

of(x1, · · · xk) : Var(u|x1, · · · xk) = σ2
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What do we get from these assumptions?

Using only assumptions 1 - 4, we can prove that:

1 E(β̂ j) = β j

This means that the mean of our estimators β̂ j are our true

population parameters β j

If we add assumption 5, we can also show that:

2 Var(β̂ j) =
σ2

u
SSTj(1−R2

j )

where SST = ∑j(xij − x̄)2 is the total sample variation in xj, and

R2
j is the R squared from regressing xj on all other independent

variables, and (as before)

σ̂2
u =

∑i û2
i

n− 2
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MLR.3 - Multicolinearity

• Definition: Two variables are said to be perfectly

multi-collinear if one variable is a linear combination of the

other variable (x2 = ax1 + b)

• Intuition: think about including two variables in your

regression (male and female), and remember in the MLR

framework we want to “hold all else constant”

• Note: some correlation between X variables is normal - we
only have a problem when there is a perfect or near perfect
(very high) correlation between X variables

• Problem with near multicollinearity is that the variance of our

estimator β̂ increases greatly.
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MLR.3 - Multi-colinearity

If we have perfect multi-colineartiy, our OLS algorithm can’t work

• Stata will automatically remove one of the variables for you

If we have near perfect multicolineartiy, we have a harder problem

• Var(β̂) will be very high

• We can see this in the variance formula: σ2
u

SSTj(1−R2
j )

• If another x variable are very closely related to xj, then R2
j

will be close to 1. (note, if we had perfect multi-collinearity,

then R2
j = 1, which breaks the formula)

• Implies that the denominator will be very close to zero ⇒
high variance
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MLR.3 - Multi-collinearity

Common examples of multi-collinearity:

1 “Dummy variable trap”: can’t include all categories for
indicator variables. Ex:

• Include both a f emale and male indicator variable

• Include all education categories (highschool, somecollege,

college, graduate)

2 Two variables are different measures of the same variable: e.g.

GDP measured using two different sources

What do we do?

• Drop one of the variables

42 / 53



Example 1: Multi-collinearity

Dummy variable trap:
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Example 2: Multi-collinearity

Near multi-collinearity between age and experience

Note: not easy to detect. Why you should look at correlation

between x variables (use “corr” command in Stata)
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Var(β̂) part 2

Moving back to var(β̂), how can we reduce variance with multiple

regressors:

Var(β̂ j) =
σ2

u

SSTj(1− R2
j )

1 Add more explanatory variables that explain variation in y

2 Avoid multi-collinearity

3 Increase sample size

4 Consider x with a larger variance

Q: Identify which part of the variance equation the four options

above affects
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Choosing what goes into the regression

How do we decide which variables to include?

There are three cases we want to think about:

1 Adding/omitting an irrelevant variable

2 Adding/omitting an important variable that is NOT

correlated with the other independent variable

3 Adding/omitting an important variable that IS correlated with

the other independent variable
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Choosing what goes into the regression

How do we decide which variables to include?

There are three cases we want to think about:

1 Adding/omitting an irrelevant variable

2 Adding/omitting an important variable that is NOT

correlated with the other independent variable

3 Adding/omitting an important variable that IS correlated with

the other independent variable
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Irrelevant x variable

We are trying to explain wages using education, experience, and

gender:

Now we add an “irrelevant” variable - whether someone is

non-white:
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Irrelevant x variable

• R2 stays the same ⇒ “nonwhite” does not explain much of

the wage variation

• Coefficients on other variables stay the same

• Standard errors on other coefficients may rise (can’t see that

here because effect is small)
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Important x variable, NOT correlated with others
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Important x variable, NOT correlated with others

• R2 drops because experience did explain some of the variation

in wages

• Other coefficients stay the same

• Because exp is not strongly correlated with the other

explanatory variables
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Important x variable, IS correlated with others
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Important x variable, IS correlated with others

• R2 drops because education explained a lot of the variation

• Coefficient on professional occupation changes a lot

• Education is strongly correlated with occupation choice

• We have omitted variable bias!! We’ll cover this next time

Q: What is the intuition here?

53 / 53


