
EEP/IAS 118 - Introductory Applied

Econometrics, Lecture 5

July 2017



Lecture Outline

This Lecture:

• Omitted Variable Bias

• Stat Review II: Confidence Intervals

Assignments:

• Problem Set 2 due next Wednesday

• Quiz 2 Next Wednesday
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Omitted Variable Bias

Recall the end of last lecture we showed how the coefficient on

pro f occ changed dramatically when we removed educ

We will investigate why this happened and what this implies about

our confidence in β̂
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Omitted Variable Bias: Motivation

Let’s examine another real world example:

• School lunch programs were developed to fight undernutrition

and boost learning. We have a sample of 408 schools (unit of

observation is the school) with data on % of kids in school

lunches and % of kids who passed a math test.

• To investigate we regress the math scores on the percentage

of kids taking advantage of the free lunch:

Math = 61.4− 0.45lunch%

• Interpret ⇒ a one percentage point increase in free lunches

decreases predicted math scores by 0.45 points. Implies free

lunch harms school performance. Does this makes sense?
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Omitted Variable Bias: Motivation

• What’s wrong / missing: in the areas with lots of school lunch

programs there are a higher poverty levels, which contributes

to lower test scores

• The model we should have had is:

Math = β0 + β1lunch% + β2 povertyrate + u

If the effect of lunches are positive but the effect of poverty is

highly negative, then we will falsely attribute the negative

poverty effect to the school lunch program by not including an

indicator for poverty rate.

• We will get downward bias in our estimate of the effect

of school lunch on math scores
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Omitted Variable Bias

Let’s examine more technically what is happening. Recall:

• Assumption MLR3: E[u|x1 · · · xk] = 0
• This is necessary to obtain an unbiased estimate of β

• E[β̂1] = β1

• As we’ve seen this assumption can fail

• One way it can fail is if we fail to include a relevant variable

(i.e. that explains y) that is also correlated with the included x.

• Consequence: Biased estimates

• E[β̂1] 6= β1
• Commonly referred to as Omitted variable bias (OVB)

Let’s draw a graph using previous example to build intuition

why failure of E[u|x1 · · · xk] = 0 implies E[β̂1] 6= β1
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Omitted Variable Bias: Math

Let’s work through the math of why E[β̂1] 6= β1 when this

assumption fails

• The true population regression is given by:

y = β0 + β1x1 + β2x2 + u

• But we choose an underspecified model:

y = β̃0 + β̃1x1 + ũ

• We want to know how does β̃1 relate to β1?
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Omitted Variable Bias: Math

We have already seen that bias occurs when the two x are

correlated. We can express this relationship with:

x2 = a + ρx1 + v

Then the true model can be expressed as:

y = β0 + β1x1 + β2(a + px1 + v) + u

= β0 + β2a︸ ︷︷ ︸
β̃0

+ (β1 + β2ρ)︸ ︷︷ ︸
β̃1

x1 + u + β2v︸ ︷︷ ︸
ũ

Then:

β̃1︸︷︷︸
underspeci f ied

= β1︸︷︷︸
true e f f ect o f lunch

+ ρ β2︸︷︷︸
e f f ect o f poverty
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Omitted Variable Bias

• We have found that that omitting a relevant variable that is

correlated with x leads to the following expression:

E[β̃1] = β1 + β2ρ12

Summary of these terms:

• β̃1 = coefficient on X from the “biased” regression

• β1 = coefficient on X from the “unbiased” regression

→ E[β̃1]− β1 = bias

• β2 = coefficient on Xomitted from the “unbiased” regression

→ sign of the relationship between Xomitted and Y

• ρ = correlation between X and Xomitted

→ sign of the relationship between X and Xomitted
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Omitted Variable Bias

• Looking at the expression for bias reveals another important

fact:

E[β̃1] = β1 + β2ρ12

• In order for there to be bias we need both

ρ12 6= 0, and , β2 6= 0

• Say if x2 is unrelated to y (β2 = 0), then leaving x2 out does

not induce bias

• In this case, including x2 simply increases the variance of β̂1

(makes the estimate less precise)
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Omitted Variable Bias

This chart summarizes resulting bias on our included variable x
when we omit the variable xov depending on the covariance

between xov and y and xov and the included x:

Cov(x, xov) > 0 Cov(x, xov) < 0

Cov(y, xov) > 0 Upward bias Downward bias

Cov(y, xov) < 0 Downward bias Upward bias

You can also use this table to determine the covariance of x and

xov if you know the sign of the bias and the relationship between

xov and y
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Omitted Variable Bias: Practice example

Let’s think about another example: a model of homicide as a

function of police financing (assume more police financing in

reality leads to fewer killings):

homicide = β0 + β1 police f inance + u

• What is missing from this model?

• Many things, but let’s focus on one variable: the level of gang

presence in an area
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Omitted Variable Bias: Practice example

Why does leaving out gang violence lead to a biased estimate of

β1?

homicide = β0 + β1 police f inance + u

• Police financing and the level of gang violence are themselves

likely to be correlated. In areas with lots of gangs, the police

likely receive more money ⇒ ρ12 = cov(police, gangs) > 0

• At the same time gangs also lead to more homicides in an

area ⇒ β2 = cov(homicide, gangs) > 0

• Therefore, if we don’t account for gang activity, it might seem

like more police financing actually causes more homicides. But

really we are just picking up the effect of gang activity!

• This implies that our estimator β̂1 will be upward biased.
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OVB: Question Types

In an over simplification, there are two core things you will be

asked to do in an OVB question:

1 Given the sign of two out of three of β1, β2, ρ12 and then

asked to find the sign of the thrid

2 Given a model, asked to think about plausible omitted

variables and then asked to sign the bias
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OVB Example - Question Type 1

We ran the following two regressions:

̂ln(wage) = 1.19 + 0.101educ + 0.011exp

̂ln(wage) = 1.06 + 0.117educ + 0.011exp− 0.25 f emale

1 Interpret the coefficients on educ in both regressions

2 In what direction was the coefficient on educ biased due to

the exclusion of f emale from the regression?

3 Discuss the coefficient on f emale

4 Based on 1) the direction of bias and 2) the coefficient on

f emale, what does this imply about the covariance between

f emale and educ?
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OVB Example - Question Type 1

̂ln(wage) = 1.19 + 0.101educ + 0.011exp

̂ln(wage) = 1.06 + 0.117educ + 0.011exp− 0.25 f emale

1 Interpret the coefficients on educ in both regressions

A one year increase in educ leads to a predicted 10.1%

(11.7%) increase in wages

2 In what direction was the coefficient on educ biased?

0.101 - 0.117 = -0.016, so we have downward bias

3 What does this imply about the covariance between f emale
and educ?
We see that

• cov( f emale, wage) < 0
• Downward bias

• ⇒ (−) = cov( f em, educ) ∗ (−)⇒ cov( f em, educ) > 0
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OVB Example - Question Type 2

Anderson (2008) examine whether state ”primary” seat belt laws

(e.g., cops can pull you over just for not wearing your seat belt)

reduces traffic fatalities. Suppose we run this regression on

population, and the presence of the law:

̂f atalities = β̂0 + β̂1 pop + β̂2 primary

̂f atalities = 156.002 + 0.1232pop + 17.258primary

1 If we were naive (i.e., weren’t concerned about OVB), how

would we interpret this regression?

2 Identify a possible important omitted variable

3 Sign the bias this omission would cause on β̂primary
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OVB Example - Question Type 2

̂f atalities = 156.002 + 0.1232pop + 17.258primary

1 If we were naive (i.e. weren’t concerned about OVB), how

would we interpret this regression?

Having a primary seatbelt law acutally increases traffic

fatalities! This surprising result should tip us off that OVB is

a possible problem

2 Identify a possible important omitted variable

State speed limit is an important omitted variable. States with

high speed limits are more likely to pass a primary seatbelt law

3 Sign the bias this omission would cause on β̂primary
We know:

• cov(speed, primary) > 0
• cov(speed, f atalities) > 0
• ⇒ upward bias
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OVB - Review

As a check we can go back to the three examples from last lecture

and answer these more rigorously

What happens when we:

1 Omitting an irrelevant x variable? Why?

2 Omitting an important variable that is not correlated with the

other independent variable? Why?

3 Omitting an important variable that is correlated with the

other independent variable? Why?
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OVB - Review

What happens when:

1 Omitting an irrelevant x2 variable? Why?

• β2 = 0 therefore there will be no bias from leaving out x2.

Including x2 could also reduce the precision of β̂1 because it

increases R2
x1 in the variance formula

2 Omitting an important variable that is not correlated with the
other independent variable? Why?

• ρ12 = 0 therefore there will be no bias from leaving out x2.

However, we could increase the precision of β̂1 if β2 is large

3 Omitting an important variable that is correlated with the
other independent variable? Why?

• Both ρ12 6= 0 and β2 6= 0, therefore leaving out x2 will

introduce bias into β1
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OVB: Final Thoughts

We’ve seen how omitting important variables can lead to biased

estimates of β

• This is a very common problem - we almost never have
enough data so that we haven’t omitted anything important

• How do we get data on things like ability? Commitment?

Family connections?

• Then why do we bother?

• Regression can still be useful for predictions of y even though

β̂s are biased

• Econometrics is primarily concerned with developing

techniques and finding conditions under which we are more

confident that we satisfy E[u|x1 · · · xk] = 0
• Much of the second part of the course will be covering some of

these techniques
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Switching gears: Confidence Intervals & Hypothesis

Testing

• We are going to be transitioning from point estimates (and

bias) to hypothesis testing

• Why? Because now we want to use statistics to tell us how

much uncertainty we should have in our estimates

• While OLS gives us the best possible fit of our model to our

sample data, we would like to know how close the estimate is

likely to be from the true population parameter.

• Today, introduce the notion of confidence intervals
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Statistics Reminders

We have a random variable Y, and we know in the population that

E[y] = µ and Var(Y) = σ2. If we then get a sample Y1, ..., Yn, we

can build an estimator for µ:

Ȳ =
1
n ∑

i
Yi

This estimator Ȳ is itself a random variable and therefore has an

expected value and a variance:

E(Ȳ) =
1
n ∑

i
E(Yi) = µ

Var(Ȳ) = Var

(
1
n ∑

i
Yi

)
=

1
n2

(
∑

i
Var(Yi)

)
=

σ2

n
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Statistics Reminders

Using these facts, we can write the distribution of Ȳ as

Ȳ ∼ N
(

µ,
σ2

n

)

• the first term (µ) is the mean of the distribution

• the second term ( σ2

n ) is the variance of the distribution

• the N(·) indicates the Normal distribution - but why a normal

distribution?
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Important Theorem in Statistics

The central limit theorem (CLT) states that the average from a

random sample for any population (with finite variance), when

standardized, has an asymptotic standard normal distribution.

Consider a random sample X1, · · · , Xn from a population with

mean µ and variance σ2, then

Zn =
X̄n − µ

σX/
√

n
d−→ N(0, 1)

⇒ If we take many samples and calculate the sample means

(X̄n), these will be normally distributed. If we then subtract

the true population mean and divide by the true population

variance, the distribution of this new random variable Zn has

PDF that is a standard normal (mean zero, standard deviation

one)
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Confidence Intervals

Why is this useful?

• We have that (by application of the CLT)

X̄ ∼ N
(

µ,
σ2

n

)

Which means that

X̄− µ
σ√
n
∼ N(0, 1)

• Which says that this transformation of X̄ is distributed as a

standard normal. This is an easy PDF to work with
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Standard Normal Distribution

• 72% of observations lie within one standard deviation

• 95% of observations lie within approximately two standard

deviations

• More specifically, we know that for any standard normal
variable v, Pr(−1.96 < v < 1.96) = 95%

• Also Pr(−1.65 < v < 1.56) = 90%
• And Pr(−2.56 < v < 2.56) = 99%

• Note: we call this value (1.65, 1.96, 2.56) the “critical value”

- these values correspond to know points in a particular

distribution such that 90%, 95%, or 99% of the probability

falls between their positive and negative values
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Standard Normal Distribution
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Confidence Intervals

We can take these facts to write:

X̄ ∼ N
(

µ,
σ2

n

)
→ X̄− µ

σ√
n

Then from our knowledge of the standard normal:

Pr

(
−1.96 <

X̄− µ
σ√
n

< 1.96

)
= 0.95

Pr
(
−1.96

σ√
n
< X̄− µ < 1.96

σ√
n

)
= 0.95

Pr
(
−X̄− 1.96

σ√
n
< −µ < −X̄ + 1.96

σ√
n

)
= 0.95

Pr
(

X̄− 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n

)
= 0.95
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Confidence Intervals

Pr(X̄− 1.96
σX√

n
< µ < X̄ + 1.96

σX√
n
) = 0.95

This now is very powerful, we have quantified the uncertainty of

our estimator

• This equation indicates that the random range defined by

[X̄− 1.96 σX√
n , X̄ + 1.96 σX√

n ] contains the true µ with 95%

probability

• Note: the wording here is very specific. We do not want to
imply that µ is a random variable. The “randomness” comes
from X̄ depending on the sample

• DON’T” say “there is a 95% chance that µ is in the

confidence interval” - you will lose points

30 / 41



Confidence Intervals

So, we have defined a 95% confidence interval:

[X̄− 1.96
σX√

n
, X̄ + 1.96

σX√
n
]

• Remember though that we don’t ever observe the true σX

• As before, we have to estimate it with sX

s2 =
(xi − X̄)2

n− 1

• This costs us something: we lose the normality of the

resulting distribution!
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Confidence Intervals

• Instead, we have to use the (student) t-distribution, which will

widen our confidence interval

X̄− µ

sx/
√

n
∼ tn−1
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Confidence Intervals

X̄− µ

sx/
√

n
∼ tn−1

Fortunately, the t-distribution is also easy (ish) to work with:

• the n− 1 is called the “degrees of freedom” - this affects how

wide the t-distribution is

• The specific values for which 95% of observations fall between

is now NOT 1.96. Instead the number we use in the 95%

confidence will generally be higher than 1.96 (and depends on

the sample size)

• Note: When n is large, the t-distribution is indistinguishable
from the normal distribution

• Roughly, once n is larger than 200 use a standard normal
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Constructing Confidence Intervals: Five Steps

We take a random sample of 121 UCB students’ heights in inches.

Now, to construct a confidence interval for the average height of

UCB students:

1 Determine the confidence level - standard is 95%, but 99%

and 90% are also used.

2 Compute X̄ and sX. Let’s say X̄ = 65 and s2
X = 4

3 Find critical value, c, from the t-table. c will depend on

sample size (n) and the confidence level:
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t-table
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Constructing Confidence Intervals: Five Steps

4 Plug everything into the confidence interval formula:

CI =

X̄− c ·
(

sx√
n

)
︸ ︷︷ ︸

se(X̄)

, X̄ + c
(

sx√
n

)
• Remember, c is found by looking at the t-table for n− 1

degrees of freedom for the desired confidence level

• X̄, sX, and n we can calculate from the sample

5 Interpret: There is a 95% probability that this interval covers

our true value.
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Constructing Confidence Intervals: Five Steps

From our example:

• c = 1.98 (found in t-table for 120 (n-1) degrees of freedom)

• X̄ = 65

• sX = 2

• n = 121

plugging everything in yields:

CI =
[

65− 1.98
(

2√
121

)
, 65 + 1.98

(
2√
121

)]
Doing the math, the 95% confidence interval is [64.64, 65.36].
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Special Case: Binary Variables
Let’s say x can only take on a zero or one value. Then p is the

true (but unknown) proportion of 1 in the population Recall that

for one observation x:

E(x) =p

Var(x) =p(1− p)

For a sample x1, ..., xn, if we find the sample average X̄:

E(X̄) =p

Var(X̄) =
p(1− p)

n

Std(X̄) =

√
p(1− p)

n

What does this mean about how we calculate a confidence interval

for p from an estimator p̂?
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Special Case: Binary Variables

From the CI formula:[
p̂− 1.96

√
p̂(1− p̂)

n
, p̂ + 1.96

√
p̂(1− p̂)

n

]

• With a continuous variable, we had to estimate σX in the

standard deviation formula

• For a binary variable, we don’t have to do this! We have

already estimated everything we need to the standard

deviation in p̂

• Implies we don’t lose our normal distribution! Therefore, with

binary variables you always choose the critical values from the

standard normal (z) distribution
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Special Case: Binary Variable Example

Let’s say we there is a poll that asks support for presidential

candidate A. The poll asks 130 registered voters and 45% support

candidate A. What is the 95% confidence interval for candidate A’s

support?

1 Confidence level is given: 95%

2 Compute p̂ and the standard error

p̂ =.45

se =

√
0.45 ∗ 0.55

130
= 0.043

3 Find the critical value from the z-table (it is 1.96)
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Special Case: Binary Variable Example

4 Plug everything into the formula

[0.45− 1.96 ∗ 0.043, 0.45 + 1.96 ∗ 0.043]

[0.365, 0.534]

5 Interpret: There is a 95% probability that the true p is

contained in the random interval [0.365,0.534]
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