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Hypothesis Testing: Intro

Last time how to construct/ interpret confidence intervals.

Sometimes we may want to go beyond just generating a range of

probable values for our population parameter:

• Often we want to test a hypothesis that our parameter is a

specific value

• For example: “vocational training schools are effective at

increasing employment rates”

• We will use our sample of data to test whether some

hypothesis we have about the true population is likely or not.
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Hypothesis Testing Process

To actually test a hypothesis, we need to follow five steps:

1 State the null (H0) and alternative (H1) hypotheses

• The null hypothesis is presumed true until we have evidence to

reject it

• Most common is testing that the population parameter is zero

H0 : µ = 0 against the alternative H1 : µ 6= 0
• The form of the alternative will determine whether you

perform a one-sided or two-sided test

2 Choose and calculate a test statistic with a known
distribution. The test statistic is just a function of our
random sample (a transformation of the estimator)

• The test statistic provides a measure of how far our sample

estimator (X̄) is from our hypothesized population value (µ)

relative to the standard error of the estimator (se(X̄))
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Hypothesis Testing Process

3 Choose significance level (α) and find critical value (c)

• Sig. level is typically 10%, 5%, or 1%. This value is the

probability that we reject the null when the null is true

• Critical value is found on the appropriate table (t, z, or F) for

the chosen significance level and given degrees of freedom

• Be careful, the critical value will change depending on whether

the test is one-sided or two-sided!

4 Define our rejection rule. Reject H0 if and only if:

|t| > |c|

5 Interpret. We either:

a. Reject the null

b. Fail to reject the null

We NEVER accept the null
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Hypothesis Testing: Intuition

• Suppose I told you I had a random number generator that

produced a “1” or a “2” with 50% probability each

• You agreed to play a game where you give me $5 when a 1

appears and I give you $5 when a 2 appears

• After 30 games, the “random” number generator has

produced 29 ones and only 1 two.

• You accuse me of cheating - but what is your evidence?

• You might say something like this: If there was indeed a 50-50

chance, then the probability that we would see 29 ones and

only one two is only 0.00001%. Therefore, I reject your claim

that the machine is fair.

This is basically exactly what hypothesis testing does - we suppose

a claim is true, then evaluate the realized data to test how likely

the original claim is
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Hypothesis Testing: Type 1 and Type 2 Errors

Choice of a significance level (α) is essentially choosing the

trade-off between Type 1 and Type 2 errors

• Type 1 Error: This is an error where we reject the null when

the null was actually true. In science, this type of error is seen

as especially damaging, therefore we try to minimize it. In

social science (e.g. economics) a 5% Type 1 error rate has

become standard. In disciplines like physics, the bar is much

higher (e.g. 0.001% type 1 error rate).

• Type 2 Error: This error occurs when we fail to reject the

null when the null is actually false. Obviously we want this to

be as low as possible, but not at the expense of increasing

Type 1 errors beyond the accepted level.
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Hypothesis Testing: Type 1 and Type 2 Errors

(H0 : Not pregnant)
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Hypothesis Testing: z-table
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Z-table practice

1 P(Z ≥ 1.75) =?

2 P(Z > a) = 0.05, what is a?

3 P(Z > a) = 0.10, what is a?

4 P(Z < −2.32) = ?

5 P(−a ≤ Z ≤ a) = 0.90, what is a?
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Z-table practice

1 P(Z ≥ 1.75) = 0.04

2 P(Z > a) = 0.05, then a = 1.64

3 P(Z > a) = 0.10, then a = 1.28

4 P(Z < −2.32) = 0.01

5 P(−a ≤ Z ≤ a) = 0.90, then a = 1.64

Note: That the a for P(Z > a) = 0.05 is the same as the a for

P(−a ≤ Z ≤ a) = 0.90. Why?

11 / 50



Hypothesis Testing: t-table
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T-table practice

1 P(t50 > c) = 0.05 what is c?

2 P(−c > t20 or t20 > c) = 0.05 what is c?
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T-table practice

1 P(t50 > c) = 0.05 then c = 1.675

2 P(−c > t20 or t20 > c) = 0.05 then c = 2.086
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The test statistic: One mean test

What do we use for our test statistic? We know from the central

limit theorem that

X̄ ∼N(µ, Var(X̄))

X̄− µ

sd(X̄)
∼N(0, 1)

X̄− µ

se(X̄)
∼tn−1(0, 1)

We use this transformation of our estimator X̄ as our test statistic:

t− stat =
X̄− µ

se(X̄)
=

X̄− µ

sX/
√

n
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The test statistic: One mean test

t =
X̄− µ

se(X̄)
=

X̄− µ

sX/
√

n

Why is this useful and intuitive?

• The numerator is the deviation between the estimator and our

hypothesized population parameter

• We “normalize” this difference based on the standard error of

our estimator, so we can think about how “surprising” the

estimator would be if the null were true

• This test stat has a known (t) distribution (we call this one a

t-stat) so we can easily compare it to critical values

In general, most test statistics have this same basic structure
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Hypothesis Testing Process: One Mean Test

Let’s say we want to test hypothesis that the true mean of UCB

student’s GPA is 3.1

1 Define hypotheses:

• Since we don’t have a good reason to think the average GPA

should be higher or lower than 3.1, our hypotheses are:

H0 : µ = 3.1

H1 : µ 6= 3.1

• Note that the 6= in the alternative hypothesis means we are

running a two-sided test
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Hypothesis Testing Process: One Mean Test

2 Compute the test statistic. Lets assume that we draw a
sample of n = 101 students, and we calculate the sample
estimators:

• X̄ = 2.984
• sx = 0.3723

The we calculate:

t =
X̄− µ

sx√
n

=
2.984− 3.1

0.3723√
101

= −3.13

Note that we inserted the value of our null hypothesis for µ as

“true” population parameter
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Hypothesis Testing Process: One Mean Test

3 Choose a significance level and find critical value.

• Let’s choose α = 0.05
• Look at t-table for critical value with chosen significance level

for a two-tailed test and n− 1 = 100 degrees of freedom

• Make sure I remember whether this is a two sided or one-sided

test
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Hypothesis Testing Process Example

3 Choose a significance level and find critical value.

• Let’s choose α = 0.05
• Look at t-table for critical value with chosen significance level

for a two-tailed test and n− 1 = 100 degrees of freedom

• Make sure I remember whether this is a two sided or one-sided

test

c = 1.984
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Hypothesis Testing Process Example

4 Do we reject the null? We only reject if:

|t| > |c|

And we have

| − 3.13| > |1.984|

So we reject the null!

5 How do we interpret this:

• We reject the null hypothesis. There is statistical evidence at

the 5% level that the average studnet GPA is different from 3.1

• What if we had failed to reject the null? We would say :

“There is no statistical evidence at the 5% level that average

GPA is different from 3.1”
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Two-tailed vs. One-tailed

What if we had instead posed the hypotheses

H0 : µ = 3.1

H1 : µ < 3.1

This is a one-tailed test. We are only concerned with determining

if the GPA is lower than 3.1

Let’s go back to the t-table from before

• What is the new critical value for our test?
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Two-tailed vs. One-tailed

What if we had instead posed the hypotheses

H0 : µ = 3.1

H1 : µ < 3.1

This is a one-tailed test. We are only concerned with determining

if the GPA is lower than 3.1

Let’s go back to the t-table from before

• What is the new critical value for our test?

• c = - 1.660

Helpful rule:

• If two-sided, look for column with value α/2

• If one-sided, look for column with value α
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Two-tailed vs. One-tailed

What if we had instead posed the hypotheses

H0 : µ = 3.1

H1 : µ < 3.1

• What is the new rejection rule for our test?

• We only reject if:

t < c

And we have

−3.13 < −1.660

• Therefore we reject → when running a one sided test, the sign

of the critical value and the test statistic matters!
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Hypothesis Testing: One Mean Test Binary Variables

Let’s say we wanted to test a hypothesis on a binary variable (e.g.

a yes / no vote). Conceptually the process is the same as before,

but we have two important (related) differences:

1 When we do hypothesis testing, we assume the null is true -

i.e. that p = .65. Now recall the formula for the variance of

our estimator X̂ when X is binary:

Var(X̄) =
p(1− p)

n

Notice how this variance only depends on the population

parameter p.

Because we are assuming that p is equal to our null

hypothesis, this implies that we DON’T have to estimate the

variance!
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Hypothesis Testing: One Mean Test Binary Variables

The second difference follows from above:

2 Because we don’t estimate the variance, we never lose the

normal distribution for the test statistic! Therefore:

z =
p̂− p
se( p̂)

∼ N(0, 1)

This implies that we need to look at a z table to find the

critical values when dealing with a binary random variable
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Hypothesis Testing Binary Variable Example

We want to test that in a yes / no vote 65% of people voted “yes”

or if the true proportion is higher than 65%. We sample 200

people and we find that 115 voted yes.

1

H0 : p = 0.65

H1 : p > 0.65

2 Calculate our test statistic:

• p̂ = 115
200 = 0.575

• Var( p̂) = p(1−p)
n = .65(1−.65)

200 = 0.0011375
• z = p̂−p

se( p̂) =
.575−.65
0.033727 = −2.224
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Hypothesis Testing Binary Variable Example

3 Let’s choose a 1% significance level. Using the z-table, for 1%

significance and 199 degrees of freedom that

c = 2.32

4 Reject if z > c
• We have −2.224 < 2.32, therefore, here we fail to reject

5 We fail to reject the null hypothesis (at the 1% significance

level) that the proportion of people who voted yes is 65%
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Hypothesis Testing: Difference in Means

Let’s say we wanted to test if two separate groups have different

means of some outcome. For example, is income different between

rural and urban areas? How does this change our process?

1 The null and alternative hypothesis are now

H0 : µ1 =µ2

H1 : µ1 6=µ2

We can also rewrite this null and alternative in this way:

H0 : D =µ1 − µ2 = 0

H1 : D =µ1 − µ2 6= 0

Note: We now are comparing two random variables to each other,

this complicates things
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Hypothesis Testing: Difference in Means

2 To calculate our test statistic we know need to calculate D̂ as

well as find se(D̂). D̂ is straight forward:

D̂ = XU − XR

In the denominator, we now need to divide by the standard

error of XU − XR (se(D̂)). This is slightly more complicated

because both of these values are random variables
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Hypothesis Testing: Difference in Means

Let’s figure out se(D̂). We know that

X̄U ∼N
(

µu,
σ2

u
nu

)
X̄R ∼N

(
µr,

σ2
r

nr

)
Then we take the difference:

D = X̄U − X̄R ∼ N
(

µu − µr,
σ2

u
nu

+
σ2

r
nr

)
Then formula for this standard error is

se(XU − XR) =

√
s2

u
nu

+
s2

r
nr
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Hypothesis Testing: Difference in Means

Let’s say that in our data we calculate

• Urban: XU = 7061.63, su = 5198, and nu = 1112

• Rural: XR = 3661.3, sr = 8974, and nr = 1112

Therefore, the standard error is:

se(D̂) =

√
51982

1112
+

89742

1112
= 310

and

D̂ = 7061.63− 3661.3 = 3400.33
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Hypothesis Testing: Difference in Means

Finally we can calculate the test statistic. Note that since we have

to replace σ with the estimator s, we have again moved to a t
distribution:

t =
D̂− DH0

se(D̂)
=

3400.33
310

= 10.97 ∼ tnu+nr−2=1112+1112−2

• NOTE: The degrees of freedom for our t-stat (distributed t)

is equal to nu + nr − 2
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Hypothesis Testing: Difference in Means

t =
D̂− DH0

se(D̂)
=

3400.33− 0
310

= 10.97 ∼ tnu+nr−2=1112+1112−2

3 Let’s choose significance level of 5%. We can use the normal

table because our DF = 2, 222 is big. The two-tailed critical

value is then

c = 1.96

4 Reject if |t| > |c|, we have 10.97 > 1.96, so we reject the null

5 Interpret: We reject the null hypothesis. There is statistical

evidence that mean incomes are not same in rural and urban

areas at the 5% level
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Hypothesis Testing: Diff in Means Binary Vars

How does this process change when we have binary variables. Let’s

say we want to evaluate whether a poverty alleviation program in

Mexico increased asset ownership. We see in the data that 14.47%

of 14,846 control families own a fridge while 16.53% of 9,213

treatment families do.

We want to test whether the proportion of people who own a

refrigerator is higher in the treatment than the control group:

1 State our hypotheses

H0 :pt − pc = D = 0

H1 :pt − pc = D > 0
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Hypothesis Testing: Diff in Means Binary Vars

2 Calculate the test statistic. We calculate D̂ as before

D̂ = p̂t − p̂c = 0.1653− 0.1447 = 0.0206

But what is se(D̂)? Remember that

Var( p̂) =
p̂(1− p̂)

n
Var( p̂t − p̂c) = Var( p̂t) + Var( p̂c)

Which means that

se( p̂t − p̂c) =

√
p̂(1− p̂)

nt
+

p̂(1− p̂)
nc
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Hypothesis Testing: Diff in Means Binary Vars

But there’s one really tricky thing here. You’ll notice that I’ve

dropped the subscription on the p̂ in the standard error formula.

Why?

se( p̂t − p̂c) =

√
p̂(1− p̂)

nt
+

p̂(1− p̂)
nc

Our null hypothesis pre-supposes that pt = pc, so in our standard

error formula we need to impose this condition. Therefore the p̂
we plug in everywhere has to be the same.

What p̂ to plug in then? We plug in the pooled p̂:

p̂pooled =
nt · p̂t

nt + nc
+

nc · p̂c

nt + nc
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Hypothesis Testing: Diff in Means Binary Vars

In our case

p̂pooled =
9213 · 0.1653
9213 + 14846

+
14846 · 0.1447
9213 + 14846

= 0.1526

Which means

se(D̂) =

√
.1526(1− .1526)

9213
+

.1526(1− .1526)
14846

= .00477

And our test statistic is (z-stat, i.e. normally distributed):

z =
D̂− DH0

se(D̂)
=

.0206− 0
.00477

= 4.32
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Hypothesis Testing: Diff in Means Binary Vars

3 Lets choose 5% significance again. For a one-sided test, the

critical value is then c = 1.65

4 We will reject if z > c and we have 4.32 > 1.65. Therefore,

we reject the null hypothesis

5 Interpret: We reject the null hypothesis at the 5% level.

There is statistical evidence that the proportion of households

that own a refridgerator in the treatment is higher than that

in the control group
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Hypothesis Testing β

How does all this apply to Econometrics?

• We want to be able to run a hypothesis test for β.

• In general the testing process for β is the same. However in

order to get a known distribution for β̂

• Recall that assumptions MLR1 to MLR4 imply that

E(β̂) = β, while assumption MLR5 stating that

Var(u|x) = σ2 meant that

Var(β̂ j) =
σ2

SSTj(1− R2
j )

So, we have the mean and variance of β̂, but what sort of

distribution is it?
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Hypothesis Testing β

To find the distribution of β̂, write it’s formula and plug in for y:

β̂1 =
cov(x, y)
var(x)

=
1

var(x)
· cov(x, β0 + β1x + u)

=
1

var(x)
· [β1var(x) + cov(x, u))]

= β1 +
1

SSTx
∑

i
(xi − x̄)ui

We see two things:

1 β̂ is biased if there is any correlation between u and x

2 The distribution of the estimator β̂ depends on the

distribution of the true error term u

43 / 50



Hypothesis Testing β

What is the distribution of u? We don’t know: this is a population

characteristic, so we can’t ever know this. So instead, we just

assume it:

• MLR6: The population error u is normally distributed with

mean 0 and variance σ2: u ∼ N(0, σ2)

• If we assume MLR1 - 5 and MLR6, we know that

β̂ j ∼ Normal[β j, Var(β̂ j)]

and therefore
β̂ j − β j

sd(β̂ j)
∼ N(0, 1)
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Hypothesis Testing β

As before we don’t actually know sd(β̂) because we don’t observe

σ, so we replace it with σ̂

As before, this means we lose the normality of the distribution and

get a t-distribution:

β̂ j − β j

se(β̂ j)
∼ t(0, 1)n−k−1

Note: n= sample size, k=number of explanatory variables (Xj) in

the regression
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Hypothesis Testing β

Using this very useful fact

β̂ j − β j

se(β̂ j)
∼ t(0, 1)n−k−1

We can

1 Create confidence intervals for β̂

2 Test a hypothesis that our true population parameter β j is

equal to any value
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Hypothesis Testing β: Example

We have this population model:

log(rent) = β0 + β1log(pop) + β2log(avginc) + β3 pctstu + u

We want to test if the percent of students in population has no

effect on the rental prices using a sample of 2,000

1 Hypotheses: H0 : β3 = 0, H1 : β3 6= 0.

2 To get calculate the test statistic, we need to find the find β̂

as well as se(β̂).
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Hypothesis Testing β: Example

Both of these are in the Stata output:

t =
0.0071755− 0

0.0016788
= 4.27

3 Significance level and critical value: 5%, and then c = 1.96

4 We reject the null because |4.27| > |1.96|
5 At the 5% significance level, we can reject the null that the

percentage of students has no effect on predicted rents

holding population and income constant.
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Hypothesis Testing β: Example II

log(wage) = β0 + β1educ + βkexp + · · ·+ u

Want to test if the return to education on wages is greater than

5%. Let’s say in Stata you see that β̂educ = 0.06 and

se(β̂educ) = 0.0045 and n = 50

1 State hypotheses

H0 : βeduc = 0.05

H1 : βeudc > 0.05
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Hypothesis Testing β: Example II

2 Construct t-stat

β̂educ − βeduc

se(β̂exp)
∼ tn−k−1

0.06− 0.05
0.0045

= 2.22 ∼ t50−2−1

3 Choose 1% significance level. The one sided c value for 1%

significance and 47 DF is 2.4

4 Reject if t > c, and we have 2.22 < 2.4 therefore we fail to

reject

5 Interpret: We fail to reject the null that the return to

education is 5% at the 1% level
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