EEP/IAS 118 - Introductory Applied Econometrics, Lecture 8

Gregory Lane

July 2017

This Lecture

Topics

- Scaling & Standardized Effects
- Confidence Intervals for Predictions
- Choice between non-nested models

Often times the units that variables come in are not the most useful for interpretation or analysis.

- Rescaling monetary units \$ thousands, \$ billions, etc.
- Distance per second into distance per hour

Example:

$$\widehat{sleep} = 3315.574 - 12.189educ + 2.7454age$$

Where sleep is measured in minutes per night. Here, $\hat{\beta}_{educ}$ is interpreted:

• One more year of education is estimated to decrease predicted sleep by 12.189 minutes per week, holding age constant

$$\widehat{sleep} = 3315.574 - 12.189educ + 2.7454age$$

Lets say we instead want to change the dependent variable to be measured in hours rather than minutes.

• Do this simply by changing our y variable into $\tilde{y} = \frac{y}{60}$ How would this change our $\hat{\beta}$?

• The new β_{educ} estimate would be $\frac{12.189}{60} = 0.2$ hours per night The entire regression result changes to this:

$$\widehat{sleep} = 55.260 - .2032educ + .0458age$$

In general, when we re-scale the outcome variable by α

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \dots + \tilde{\beta}_k x_k + u$$

$$\alpha y = \alpha \beta_0 + \alpha \beta_1 x_1 + \dots + \alpha \beta_k x_k + u$$

In the above example, $\alpha = \frac{1}{60}$, so the new $\hat{\beta}$ s will be divided by 60 too.

• Note: nothing else about the regression will change (R², t-stats, p-values, etc.)

Let's say instead we rescale an independent x variable:

- Rescale education to be in units of half-years (6 months) i.e. we multiply *educ* by 2
- The new regression would give us:

$$\widehat{sleep} = 3315.574 - 6.095 educ + 2.7454 age$$

• Only the coefficient on the independent variable we modified has changed

In general, if we scale x by α , the equation becomes:

$$y = \beta_0 + \tilde{\beta}_1 \tilde{x}_1 + \dots + \beta_k x_k + u$$
$$= \beta_0 + \frac{\beta_1}{\alpha} (\alpha x_1) + \dots + \beta_k x_k + u$$

• In the above example, we had $\alpha = 2$, which meant we had to scale our estimate of $\hat{\beta}_{educ}$ by $\frac{1}{2}$.

Up until now we've been considering cases where we want to change the units of a variable into units that are more useful

- But what if we don't want units at all? Why would we want this?
 - Want to compare the relative effects of two variables that don't have the same unit e.g. education and SAT score on income
- This is useful for many economic models: Hedonic Price Model

Hedonic Price Model

Idea behind Hedonic Price Model:

- We want to measure "Willingness to Pay" (WTP) for certain amenities:
 - Environmental amenities (clean water, clean air, parks, ect.)
 - House Characteristics (school district, local pollution, etc.)
- These can be difficult to measure, as most people are never asked to explicitly "buy" these goods
- How do we measure their value:
 - Directly ask: "What is your WTP?" via survey *Problem:* Question framing important, people will inflate / deflate values because choice is not real
 - 2 Revealed Preference: you reveal your preference for amenities via the value you paid to obtain them

Hedonic Price Model

Two common ways to do this:

- Travel cost method: Used for value of fishing / beaches you can infer the value of these amenities by how much people pay to travel to access them (especially over closer locations without these amenities)
- 2 Hedonic Price: When you choose a place to live, your WTP for the house reveals your preference for the value of all the amenities the house has access to

Hedonic Price:

price = f(#rooms, size yard, ..., pollution, crime, school quality)

price = f(#rooms, size yard, ..., pollution, crime, school quality)

Would use data from housing sales, with price, and all information about the house and location we can and then we would run a linear model:

$$price = \beta_0 + \beta_1 NO_2 + \beta_2 crime + \beta_3 rooms...$$

Hedonic Price Model

. reg price nox crime dist rooms lowstat stratio, beta

Source	SS	df		MS	
	3.0150e+10 1.2675e+10	-	5.025 25401		
Total	4.2826e+10	505	848	03032	
price	Coef.	Std.	Err.	t	P> t
nox	-1757.656	331.4	1642	-5.30	0.000

price	Coef.	Std. Err.	t	P> t
nox	-1757.656	331.4642	-5.30	0.000
crime	-80.57672	30.47786	-2.64	0.008
dist	-1202.372	170.5011	-7.05	0.000
rooms	4412.584	415.8469	10.61	0.000
lowstat	-519.7665	48.41627	-10.74	0.000
stratio	-998.834	115.819	-8.62	0.000
_cons	34431.7	4732.075	7.28	0.000

Hedonic Price Model

Source	ss	df	MS	
Model Residual	3.0150e+10 1.2675e+10		250e+09 01468.7	
Total	4.2826e+10	505 8	4803032	
price	Coef.	Std. Err.	t	P> t
nox crime dist rooms lowstat stratio _cons	-1757.656 -80.57672 -1202.372 4412.584 -519.7665 -998.834 34431.7	331.4642 30.47786 170.5011 415.8469 48.41627 115.819 4732.075	-5.30 -2.64 -7.05 10.61 -10.74 -8.62 7.28	0.000 0.008 0.000 0.000 0.000 0.000 0.000

. reg price nox crime dist rooms lowstat stratio, beta

But we want to compare these coefficients!

- What do consumers value more crime or pollution?
- Problem is that crime and pollution have vastly different ranges

We can do this by standardizing the variables in the regression

Standardize Variables

Standardizing means we will compare how a one standard deviation increase in x_1 affects y to how a one Stdev increase in x_2 affects y

We do this by transforming all our variables by subtracting their mean and dividing by the standard deviation:

$$\begin{split} \tilde{y} &= \left(\frac{y - \bar{y}}{\hat{\sigma}_y}\right) \\ \tilde{x} &= \left(\frac{x_1 - \bar{x}_1}{\hat{\sigma}_{x_1}}\right) \end{split}$$

This should look familiar - this is what we do with our t-stats! Idea is that we put all the variables on the same scale. Then we can compare relative effects.

Standardize Variables

Once we standardize all the units, re-running the regression produces:

$$\left(\frac{y-\bar{y}}{\hat{\sigma}_y}\right) = \frac{\hat{\sigma}_{x_1}}{\hat{\sigma}_y}\hat{\beta}_1\left(\frac{x_1-\bar{x}}{\hat{\sigma}_{x_1}}\right) + \frac{\hat{\sigma}_{x_2}}{\sigma_y}\hat{\beta}_2\left(\frac{x_2-\bar{x}_2}{\hat{\sigma}_{x_2}}\right)$$

- The new parameters will be equal to the old parameters scaled by $\frac{\hat{\sigma}_{x_1}}{\hat{\sigma}_v}$
- This is called the "standardized coefficient" or the "beta coefficient"
- Note there is no β_0 because it will be zero (why?)
- In Stata we can produce these coefficients with the "beta" option (because transforming each variable is a pain)

Standardize Variables

. reg price nox crime dist rooms lowstat stratio, beta

Source	SS	df	MS		Number of $obs = 506$ F(6, 499) = 197.82
Model Residual	3.0150e+10 1.2675e+10		.0250e+09 5401468.7		Prob > F = 0.0000 R-squared = 0.7040
+					Adj R-squared = 0.7005
Total	4.2826e+10	505	84803032		Root MSE = 5040
	Coef.	Std. Er		P> t	
price	coer.	Sta. Er	r. t	P> t	Beta
nox	-1757.656	331.464	2 -5.30	0.000	2210981
crime	-80.57672	30.4778	6 -2.64	0.008	0751639
dist	-1202.372	170.501	1 -7.05	0.000	2749917
rooms	4412.584	415.846	9 10.61	0.000	.3366601
lowstat	-519.7665	48.4162	7 -10.74	0.000	4085311
stratio	-998.834	115.81	9 -8.62	0.000	2349146
_cons	34431.7	4732.07	5 7.28	0.000	· · · ·

- One SD increase in pollution leads to 0.22 SD decrease in prices
- One SD increase in crime leads to a 0.07 SD decrease in prices

There are some instances where we may care about the predicted value of the dependent variable y

We know that the estimated regression give us \hat{y} which is our best guess for y for and given x. However, \hat{y} is a random variable (just like $\hat{\beta}$) and therefore has uncertainty.

 We can quantify this uncertainty and create a confidence interval for ŷ for any specific combination of x_i

Confidence Intervals for y

However, there are two types of CI that we may want to calculate:

- **1** A confidence interval for the **average** y given $x_1, ..., x_k$
- **2** A confidence interval for a **particular** y given $x_1, ..., x_k$

You can think of the difference as being the answer to these two questions:

- 1 How uncertain are we about the average income for this type of person?
- 2 If we asked a person of this type their income, what range would cover 95% of responses

Confidence Intervals for average y

Recall that regression gives us an estimate of y given x:

$$\widehat{\mathbb{E}}[y|x_1, x_2, x_2] = \widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2 + \widehat{\beta}_3 x_3$$

- If we want the best estimate for a particular value of x_j , we just plug those values into the equation
- To get a CI, then we only need to find the stand error for this prediction
- Recall that β_0 takes on the predicted value of y when all the x_j are zero

$$\hat{\beta}_0 = \hat{E}(y|x_1 = 0, x_2 = 0, x_3 = 0)$$

Confidence Intervals for average y

$$\hat{\beta}_0 = \hat{E}(y|x_1 = 0, x_2 = 0, x_3 = 0)$$

Therefore, if we transform our x_j by subtracting the values
 (α_j) for which we want a prediction:

$$y = \beta_0 + \beta_1(x_1 - \alpha_1) + \beta_2(x_2 - \alpha_2) + \beta_3(x_3 - \alpha_3)$$

Then

$$\hat{\beta}_0 = \hat{E}(y|x_1 = \alpha_1, x_2 = \alpha_2, x_3 = \alpha_3)$$

When we run the regression with these transformed variables, $\hat{\beta}_0$ will then be best prediction and Stata will produce the correct SE

Confidence Intervals for average y

Process Summary for CI on average *y*:

- **1** Generate new variables: $\tilde{x}_j = x_j \alpha_j$.
- 2 Run the regression of: $y = \tilde{\beta}_0 + \tilde{\beta}_1 \tilde{x}_1 + ... + \tilde{\beta}_k \tilde{x}_k + \tilde{u}$
- 3 Then $\hat{\mathbb{E}}[y|x_1 = \alpha_1, ..., x_k = \alpha_k] = \tilde{\beta}_0$ and the standard error for this estimate is $SE(\tilde{\beta}_0)$.
- 4 Plug these values into the formula for confidence intervals and interpret.

$$[ilde{eta}_0 - c \cdot SE(ilde{eta}_0)$$
 , $ilde{eta}_0 + c \cdot SE(ilde{eta}_0)]$

Confidence Intervals for average y: Example

For an example, let's use Woolridge's birthweight data. Let's say we want to find a prediction for average birthweight for babies with family income of \$14,500 (ln(14.5) = 2.674), mothers with 12 years of education, and with 2 older siblings (parity = 3)

Running the standard regression:

$$\widehat{bwght} = 105.66 + 2.13ln(famine) + 0.317meduc + 1.53parity$$
$$\widehat{y} = 105.66 + 2.13(2.674) + .317(12) + 1.53(3)$$
$$= 119.75 \text{ ounces}$$

Which is our best guess for $\hat{y}_{faminc=14.5,meduc=12,parity=3}$

Confidence Intervals for average y: Example

To get the SE of this prediction, we run:

$$bwght = \beta_0 + \beta_1 (lfaminc - 2.674) +$$

 $\beta_2(meduc - 12) + \beta_3(parity = 3) + u$

bwght		Std. Err.		P> t	
lfaminc_0 meduc_0 parity_0 _cons	2.131266 .3171976 1.526144	.6505986 .2519682 .6119145 1.006928	3.28 1.26 2.49 118.82	0.001 0.208 0.013 0.000	

Note, how now the "cons" takes on the predicted value and has a standard error!

Using this output, the 95% confidence interval for the average birthweight for babies given family income of \$14,500 (ln(14.5) = 2.674), mothers with 12 years of education, and with 2 older siblings (parity = 3) is:

[119.64 - 1.96(1.007), 119.64 + 1.96(1.007)] = [117.6653, 121.6158]

Now let's turn to how we can create a confidence interval of y for a *particular* individual with certain x.

- Again, this is different (larger) than our CI for the *average* y in a sub-popultaion
- This is because we need to account for both the variance in our calculation of \hat{y} as well as the variance unobserved error term u

Let's see how to think about this using our example. Let $bwght^0$ denote the value for which we want to construct a confidence interval:

$$bwght^0 = \beta_0 + \beta_1 lfaminc^0 + \beta_2 meduc^0 + \beta_3 parity^0 + u^0$$

Our best prediction of $bwght^0$ is $bwght^0$, where

$$\widehat{bwght}^{0} = \hat{\beta}_{0} + \hat{\beta}_{1} lfaminc^{0} + \hat{\beta}_{2} meduc^{0} + \hat{\beta}_{3} parity^{0}$$

there is some error associated with using \widehat{hught}^{0} to predic

Now there is some error associated with using bwght to predict $bwght^0$:

$$\hat{u}^{0} = bwght^{0} - \widehat{bwght}^{0} = \beta_{0} + \beta_{1}lfaminc^{0} + \beta_{2}educ^{0} + \beta_{3}par^{0} + u^{0} \\ -\hat{\beta}_{0} + \hat{\beta}_{1}lfaminc + \hat{\beta}_{2}meduc + \hat{\beta}_{3}parity$$

To get a confidence interval, we need to quantify the variance of the error in this prediction:

$$Var(\hat{u}^{0}) = Var(bwght^{0} - \widehat{bwght}^{0})$$

$$= Var(\beta_{0} + \beta_{1}lfaminc^{0} + \beta_{2}educ^{0} + \beta_{3}parit^{0} + u^{0} - \widehat{bwght}^{0})$$

$$= Var(\widehat{bwght}^{0}) + Var(u^{0})$$

$$= Var(\widehat{bwght}^{0}) + \sigma^{2}$$

$$\widehat{Var(\hat{u}^{0})} = Var(\widehat{bwght}^{0}) + \hat{\sigma}^{2}$$

$$= Var(\widehat{bwght}^{0}) + \frac{\sum \hat{u}_{i}^{2}}{n-k-1} = Var(\widehat{bwght}^{0}) + \frac{SSR}{n-k-1}$$

$$Var(\widehat{bwght}^0) + \frac{SSR}{n-k-1}$$

There are two sources of variation in \hat{u}^0

- 1 The sampling error in \widehat{bwght}^0 which arises because we have estimated the population parameters (β).
- 2 The variance of the error in the population (u^0) .
- Compute the $Var(\widehat{bwght}^0)$ exactly as before
- Second we can compute $\frac{SSR}{n-k-1}$ from our regression output
- Then the 95% confidence interval for *bwght*⁰:

$$\hat{y} \pm 1.96 \cdot se(\hat{u}^0)$$

Confidence Intervals for a particular y: Summary

- **1** Generate new variables: $\tilde{x}_j = x_j \alpha_j$.
- 2 Run the regression of: $y = \tilde{\beta}_0 + \tilde{\beta}_1 \tilde{x}_1 + ... + \tilde{\beta}_k \tilde{x}_k + \tilde{u}$
- 3 Then $\hat{\mathbb{E}}[y|x_1 = \alpha_1, ..., x_k = \alpha_k] = \tilde{\beta}_0$ and the standard error for this estimate is $SE(\tilde{\beta}_0)$.
- Get an estimate for the variance of
 û =
 *ô*²
 from the Stata output.
- **5** Compute the standard error: $\sqrt{SE(\tilde{\beta}_0)^2 + \hat{\sigma}^2}$.
- 6 Plug these values into the formula for confidence intervals and interpret.

Choice Between Non-Nested Models

You've been asked to do the following in past problems:

- 1 Deciding if one of your x variables is significant \Rightarrow t-test
- 2 Deciding if multiple variables together are significant \Rightarrow F-test.
- These tests compare *nested* models
 - Nested models are cases where one equation is just a special case of the other (e.g. fixing β_3 and $\beta_4 = 0$)

How do we compare non-nested models?

• Use Adjusted R²

Adjusted R^2 : Comparing Non-nested Models

Regular \mathbb{R}^2 is a measure of "goodness of fit", so why not just use that?

- *R*² will always (weakly) increase when you add more variables to the regression
- Not useful to choosing which model is better, more complex one will always win

Therefore, we use Adjusted R^2 which adds a penalty for each additional variable added to the model

Adjusted R^2

The formula for adjusted R^2 is:

$$1 - \frac{SSR/(n-k-1)}{SST/(n-1)}$$

Adding variables now has two effects:

1 The *SSR* in the numerator will always (weakly) decrease with an additional variable

2 However, k will also increase (making the numerator larger) Therefore, the effect on the adjusted R^2 from adding an additional variable to the regression will depend on if the extra explanatory power is larger than the penalty When does Adj R^2 come in handy:

- Choosing a functional form for the right hand side variables can be difficult
- A common example is a choice between log(x) and a quadratic x and x^2
- Both can be reasonable choices and it is difficult to eyeball which is better

Adj R^2 : Two Models of Sleep

reg sleep lnage

Source	SS	df	MS		Number of obs = 706
+					F(1, 704) = 4.54
Model	891303.042	1	891303.042		Prob>F = 0.0335
Residual	138348533	704	196517.802		R-squared = 0.0064
+					Adj R-squared = 0.0050
Total	139239836	705	197503.313		Root MSE = 443.3
sleep			Err. t	P> t	[95% Conf. Interval]
lnage	122.9174	57.716		0.034	9.599897 236.2349
_cons	2821.777	209.42	207 13.47	0.000	2410.613 3232.941

Source		df	MS		Number of obs = 706
Model Residual	137200828	2 10 703 19	19503.99 5164.762		F(2,703) = 5.22 Prob>F = 0.0056 R-squared = 0.0146 Adj R-squared = 0.0118 Root MSE = 441.77
sleep	Coef.	Std. Err		P> t	[95% Conf. Interval]
age agesquared _cons	-21.4904 .3011932	11.73674 .140117 230.6457	-1.83 2.15 15.64	0.068 0.032 0.000	-44.53366 1.552851 .0260954 .576291 3155.193 4060.867

Which do we prefer? Look at $Adj - R^2$

Choice Between y and ln(y)

Rather than trying to choose between what x to include in a model, what if we are trying to choose between different functional forms of y? A common example is the choice between y and ln(y) A natural choice might be to run both regressions:

$$y = \hat{\beta}_0 + \hat{\beta} 1 x_1 + \dots + \hat{\beta}_k x_k + \hat{u}$$
$$ln(y) = \hat{\alpha}_0 + \hat{\alpha}_1 x_1 + \dots + \hat{\alpha}_k x_k + \hat{u}$$

And then look at the R^2 of each model to decide the best fit. But this is **wrong**

Choice Between y and ln(y)

How can we see the problem? Remember that $R^2 = corr(y, \hat{y})^2$ so what we're actually comparing is:

$$corr(y, \hat{y})^2$$
 to $corr(ln(y), \widehat{ln(y)})^2$

- Comparing the \mathbb{R}^2 for each model isn't an apples to apples comparison
- We need to do something else

Choice Between y and ln(y)

Process to choose:

- 1 Estimate the log model: $ln(y) = \hat{\alpha}_0 + \hat{\alpha}_1 x_1 + ... + \hat{\alpha}_k x_k + u$
- 2 Predict: y from the log model: $\hat{y} = e^{\widehat{ln(y)}}e^{\frac{\vartheta^2}{2}}$
- 3 Find the correlation and square it (to get alternative R²_{log}): y and the ŷ from the log model. This gives us an alternative R².
- 4 Estimate the linear model (to get R_{lin}^2): $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + ... + \hat{\beta}_k x_k + u$ and get it's R^2
- **5** Compare R_{lin}^2 to R_{log}^2 and choose the higher one

Note: that to predict \hat{y} from $\widehat{ln(y)}$, you need to raise to the exponential *and* multiply by $e^{\frac{\hat{\sigma}^2}{2}}$ (where $\hat{\sigma}^2$ is found in the regression output under MS residual)

Choice Between y and ln(y): Example

. reg lprice l	lotsize lsqrf	t bdrm	S				
Source	SS	df		MS		Number of obs	= 88
+	+					F(3, 84)	= 50.42
Model	5.15504028	3	1.71	834676		Prob > F	= 0.0000
Residual	2.86256324	84	.034	078134		R-squared	= 0.6430
+	+					Adj R-squared	= 0.6302
Total	8.01760352	87	.092	156362		Root MSE	= .1846
-						[95% Conf.	
	.1679667			4.39			
lsqrft	.7002324	.0928	652	7.54	0.000	.5155597	.8849051
bdrms	.0369584	.0275	313	1.34	0.183	0177906	.0917074
_cons	-1.297042	.6512	836	-1.99	0.050	-2.592191	001893

Choice Between y and ln(y): Example

. reg price lot	size sqrft b	drms					
Source	SS	df		MS		Number of obs	= 88
+-						F(3, 84)	= 57.46
Model	617130.701	3	2057	10.234		Prob > F	= 0.0000
Residual	300723.805	84	358	0.0453		R-squared	= 0.6724
+-						Adj R-squared	= 0.6607
Total	917854.506	87	1055	0.0518		Root MSE	= 59.833
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
+-							
lotsize	.0020677	.0006	421	3.22	0.002	.0007908	.0033446
sqrft	.1227782	.0132	374	9.28	0.000	.0964541	.1491022
bdrms	13.85252	9.010	145	1.54	0.128	-4.065141	31.77018
_cons	-21.77031	29.47	504	-0.74	0.462	-80.38466	36.84405

Choice Between y and ln(y): Example

Process:

- Estimate the log model: reg log(price) log(lotsize) log(sqrft) bdrms
- 2 Get your predictions from this regression: predict lpricehat
- 3 Predict: y from the log model: gen pricehat=exp(lpricehat)*exp(.034078134/2)
- 4 Find the correlation and square it: correl price price hat (= 0.7377)
- 5 Find the R^2 from the linear regression ($R^2 = 0.6724$)
- 6 Compare: For predicting price, the log model is notably better.

Review

- 1 One parameter: use t-stat and test significance
- 2 Multiple parameters: use F-test
- 3 Choosing between two non-nested models: Adj R^2
- 4 Choosing between different functional forms for y (y and ln(y)), use process above