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This Lecture

Topics

• Scaling & Standardized Effects

• Confidence Intervals for Predictions

• Choice between non-nested models
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Scaling Variables

Often times the units that variables come in are not the most

useful for interpretation or analysis.

• Rescaling monetary units - $ thousands, $ billions, etc.

• Distance per second into distance per hour

Example:

ŝleep = 3315.574− 12.189educ + 2.7454age

Where sleep is measured in minutes per night. Here, β̂educ is

interpreted:

• One more year of education is estimated to decrease predicted

sleep by 12.189 minutes per week, holding age constant
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Scaling Variables

ŝleep = 3315.574− 12.189educ + 2.7454age

Lets say we instead want to change the dependent variable to be

measured in hours rather than minutes.

• Do this simply by changing our y variable into ỹ = y
60

How would this change our β̂?

• The new βeduc estimate would be 12.189
60 = 0.2 hours per night

The entire regression result changes to this:

ŝleep = 55.260− .2032educ + .0458age

4 / 41



Scaling Variables

In general, when we re-scale the outcome variable by α

ỹ = β̃0 + β̃1x1 + ... + β̃kxk + u

αy = αβ0 + αβ1x1 + ... + αβkxk + u

In the above example, α = 1
60 , so the new β̂s will be divided by 60

too.

• Note: nothing else about the regression will change (R2,

t-stats, p-values, etc.)
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Scaling Variables

Let’s say instead we rescale an independent x variable:

• Rescale education to be in units of half-years (6 months) - i.e.

we multiply educ by 2

• The new regression would give us:

ŝleep = 3315.574− 6.095educ + 2.7454age

• Only the coefficient on the independent variable we modified

has changed
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Scaling Variables

In general, if we scale x by α, the equation becomes:

y =β0 + β̃1 x̃1 + ... + βkxk + u

=β0 +
β1

α
(αx1) + ... + βkxk + u

• In the above example, we had α = 2, which meant we had to

scale our estimate of β̂educ by 1
2 .
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Standardizing Variables

Up until now we’ve been considering cases where we want to

change the units of a variable into units that are more useful

• But what if we don’t want units at all? Why would we want
this?

• Want to compare the relative effects of two variables that don’t

have the same unit - e.g. education and SAT score on income

• This is useful for many economic models: Hedonic Price

Model

8 / 41



Hedonic Price Model

Idea behind Hedonic Price Model:

• We want to measure “Willingness to Pay” (WTP) for certain
amenities:

• Environmental amenities (clean water, clean air, parks, ect.)

• House Characteristics ( school district, local pollution, etc.)

• These can be difficult to measure, as most people are never

asked to explicitly “buy” these goods

• How do we measure their value:

1 Directly ask: “What is your WTP?” via survey

Problem: Question framing important, people will inflate /

deflate values because choice is not real

2 Revealed Preference: you reveal your preference for amenities

via the value you paid to obtain them
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Hedonic Price Model

Two common ways to do this:

1 Travel cost method: Used for value of fishing / beaches -

you can infer the value of these amenities by how much

people pay to travel to access them (especially over closer

locations without these amenities)

2 Hedonic Price: When you choose a place to live, your WTP

for the house reveals your preference for the value of all the

amenities the house has access to

Hedonic Price:

price = f (#rooms, size yard, ... , pollution, crime, school quality)
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Hedonic Price Model

price = f (#rooms, size yard, ... , pollution, crime, school quality)

Would use data from housing sales, with price, and all information

about the house and location we can and then we would run a

linear model:

price = β0 + β1NO2 + β2crime + β3rooms...
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Hedonic Price Model
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Hedonic Price Model

But we want to compare these coefficients!

• What do consumers value more - crime or pollution?

• Problem is that crime and pollution have vastly different

ranges

We can do this by standardizing the variables in the regression
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Standardize Variables

Standardizing means we will compare how a one standard deviation

increase in x1 affects y to how a one Stdev increase in x2 affects y

We do this by transforming all our variables by subtracting their

mean and dividing by the standard deviation:

ỹ =

(
y− ȳ

σ̂y

)
x̃ =

(
x1 − x̄1

σ̂x1

)
This should look familiar - this is what we do with our t-stats! Idea

is that we put all the variables on the same scale. Then we can

compare relative effects.
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Standardize Variables

Once we standardize all the units, re-running the regression

produces:(
y− ȳ

σ̂y

)
=

σ̂x1

σ̂y
β̂1

(
x1 − x̄

σ̂x1

)
+

σ̂x2

σy
β̂2

(
x2 − x̄2

σ̂x2

)

• The new parameters will be equal to the old parameters

scaled by
σ̂x1
σ̂y

• This is called the “standardized coefficient” or the “beta

coefficient”

• Note there is no β0 because it will be zero (why?)

• In Stata we can produce these coefficients with the “beta”

option (because transforming each variable is a pain)
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Standardize Variables

• One SD increase in pollution leads to 0.22 SD decrease in

prices

• One SD increase in crime leads to a 0.07 SD decrease in prices
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Confidence Intervals for y

There are some instances where we may care about the predicted

value of the dependent variable y

We know that the estimated regression give us ŷ which is our best

guess for y for and given x. However, ŷ is a random variable (just

like β̂) and therefore has uncertainty.

• We can quantify this uncertainty and create a confidence

interval for ŷ for any specific combination of xj
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Confidence Intervals for y

However, there are two types of CI that we may want to calculate:

1 A confidence interval for the average y given x1, ..., xk

2 A confidence interval for a particular y given x1, ..., xk

You can think of the difference as being the answer to these two

questions:

1 How uncertain are we about the average income for this type

of person?

2 If we asked a person of this type their income, what range

would cover 95% of responses
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Confidence Intervals for average y

Recall that regression gives us an estimate of y given x:

Ê[y|x1, x2, x2] = ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3

• If we want the best estimate for a particular value of xj, we

just plug those values into the equation

• To get a CI, then we only need to find the stand error for this

prediction

• Recall that β0 takes on the predicted value of y when all the

xj are zero

β̂0 = Ê(y|x1 = 0, x2 = 0, x3 = 0)
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Confidence Intervals for average y

β̂0 = Ê(y|x1 = 0, x2 = 0, x3 = 0)

• Therefore, if we transform our xj by subtracting the values

(αj) for which we want a prediction:

y = β0 + β1(x1 − α1) + β2(x2 − α2) + β3(x3 − α3)

Then

β̂0 = Ê(y|x1 = α1, x2 = α2, x3 = α3)

When we run the regression with these transformed variables,

β̂0 will then be best prediction and Stata will produce the

correct SE
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Confidence Intervals for average y

Process Summary for CI on average y:

1 Generate new variables: x̃j = xj − αj.

2 Run the regression of: y = β̃0 + β̃1 x̃1 + ... + β̃k x̃k + ũ

3 Then Ê[y|x1 = α1, ..., xk = αk] = β̃0 and the standard error

for this estimate is SE(β̃0).

4 Plug these values into the formula for confidence intervals and

interpret.

[β̃0 − c · SE(β̃0) , β̃0 + c · SE(β̃0)]
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Confidence Intervals for average y: Example

For an example, let’s use Woolridge’s birthweight data. Let’s say

we want to find a prediction for average birthweight for babies with

family income of $14,500 (ln(14.5) = 2.674), mothers with 12

years of education, and with 2 older siblings (parity = 3)

Running the standard regression:

b̂wght = 105.66 + 2.13ln( f amine) + 0.317meduc + 1.53parity

ŷ = 105.66 + 2.13(2.674) + .317(12) + 1.53(3)

= 119.75 ounces

Which is our best guess for ŷ f aminc=14.5,meduc=12,parity=3
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Confidence Intervals for average y: Example

To get the SE of this prediction, we run:

bwght = β0 + β1(l f aminc− 2.674)+

β2(meduc− 12) + β3(parity = 3) + u

------------------------------------------------------------------------------

bwght | Coef. Std. Err. t P>|t|

-------------+----------------------------------------------------------------

lfaminc_0 | 2.131266 .6505986 3.28 0.001

meduc_0 | .3171976 .2519682 1.26 0.208

parity_0 | 1.526144 .6119145 2.49 0.013

_cons | 119.6405 1.006928 118.82 0.000

------------------------------------------------------------------------------

Note, how now the “cons” takes on the predicted value and has a

standard error!
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Confidence Intervals for average y: Example

Using this output, the 95% confidence interval for the average

birthweight for babies given family income of $14,500

(ln(14.5) = 2.674), mothers with 12 years of education, and with

2 older siblings (parity = 3) is:

[
119.64− 1.96(1.007), 119.64+ 1.96(1.007)

]
=
[
117.6653, 121.6158

]
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Confidence Intervals for a particular y

Now let’s turn to how we can create a confidence interval of y for

a particular individual with certain x.

• Again, this is different (larger) than our CI for the average y
in a sub-popultaion

• This is because we need to account for both the variance in

our calculation of ŷ as well as the variance unobserved error

term u
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Confidence Intervals for a particular y
Let’s see how to think about this using our example. Let bwght0

denote the value for which we want to construct a confidence

interval:

bwght0 = β0 + β1l f aminc0 + β2meduc0 + β3 parity0 + u0

Our best prediction of bwght0 is b̂wght0, where

b̂wght
0
= β̂0 + β̂1l f aminc0 + β̂2meduc0 + β̂3 parity0

Now there is some error associated with using b̂wght
0

to predict

bwght0:

û0 = bwght0 − b̂wght
0
= β0 + β1l f aminc0 + β2educ0 + β3 par0 + u0

− β̂0 + β̂1l f aminc + β̂2meduc + β̂3 parity
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Confidence Intervals for a particular y

To get a confidence interval, we need to quantify the variance of

the error in this prediction:

Var(û0) = Var(bwght0 − b̂wght
0
)

= Var(β0 + β1l f aminc0 + β2educ0 + β3 parit0 + u0 − b̂wght
0
)

= Var(b̂wght
0
) + Var(u0)

= Var(b̂wght
0
) + σ2

V̂ar(û0) = Var(b̂wght
0
) + σ̂2

= Var(b̂wght
0
) +

∑ û2
i

n− k− 1
= Var(b̂wght

0
) +

SSR
n− k− 1
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Confidence Intervals for a particular y

Var(b̂wght
0
) +

SSR
n− k− 1

There are two sources of variation in û0

1 The sampling error in b̂wght
0

which arises because we have

estimated the population parameters (β).

2 The variance of the error in the population (u0).

• Compute the Var(b̂wght
0
) exactly as before

• Second we can compute SSR
n−k−1 from our regression output

• Then the 95% confidence interval for bwght0:

ŷ± 1.96 · se(û0)
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Confidence Intervals for a particular y: Summary

1 Generate new variables: x̃j = xj − αj.

2 Run the regression of: y = β̃0 + β̃1 x̃1 + ... + β̃k x̃k + ũ

3 Then Ê[y|x1 = α1, ..., xk = αk] = β̃0 and the standard error

for this estimate is SE(β̃0).

4 Get an estimate for the variance of û = σ̂2 from the Stata

output.

5 Compute the standard error:
√

SE(β̃0)2 + σ̂2.

6 Plug these values into the formula for confidence intervals and

interpret.
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Choice Between Non-Nested Models

You’ve been asked to do the following in past problems:

1 Deciding if one of your x variables is significant ⇒ t-test

2 Deciding if multiple variables together are significant ⇒
F-test.

These tests compare nested models

• Nested models are cases where one equation is just a special

case of the other (e.g. fixing β3 and β4 = 0)

How do we compare non-nested models?

• Use Adjusted R2
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Adjusted R2: Comparing Non-nested Models

Regular R2 is a measure of “goodness of fit”, so why not just use

that?

• R2 will always (weakly) increase when you add more variables

to the regression

• Not useful to choosing which model is better, more complex

one will always win

Therefore, we use Adjusted R2 which adds a penalty for each

additional variable added to the model
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Adjusted R2

The formula for adjusted R2 is:

1− SSR/(n− k− 1)
SST/(n− 1)

Adding variables now has two effects:

1 The SSR in the numerator will always (weakly) decrease with

an additional variable

2 However, k will also increase (making the numerator larger)

Therefore, the effect on the adjusted R2 from adding an additional

variable to the regression will depend on if the extra explanatory

power is larger than the penalty
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Adj R2: Two Models of Sleep

When does Adj R2 come in handy:

• Choosing a functional form for the right hand side variables

can be difficult

• A common example is a choice between log(x) and a

quadratic x and x2

• Both can be reasonable choices and it is difficult to eyeball

which is better
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Adj R2: Two Models of Sleep

EEP/IAS 118 - Introductory Applied Econometrics
Spring 2017

Lane and Ramirez-Ritchie
Section Handout 9

Looking at this formula, you should notice three things:

1. When we add variables to a regression, SSR cannot increase so SSR
SST will (weakly) decrease.

2. However, adding variables to a regression will make k bigger (since k is the number of
variables), so n�1

n�k�1 will increase.

3. As the sample size n increases, n�1
n�k�1 gets closer to 1.

Bottom line: the adjusted R2, which is sometimes denoted R̄2, includes a “penalty” to including
variables, so we don’t always conclude that adding variables improves the fit. However, the R2

and the adjusted R2 will be very similar for very large samples.

When does adjusted R2 come in handy? When we want to compare non-nested models. Suppose
your friend Morgan thinks that older people sleep more at night, but the increase in sleep over
time is diminishing, i.e. Morgan thinks the relationship between sleep and age is logarithmic and
she shows you the results from her estimation:

reg sleep lnage

Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 1, 704) = 4.54

Model | 891303.042 1 891303.042 Prob>F = 0.0335

Residual | 138348533 704 196517.802 R-squared = 0.0064

-------------+------------------------------ Adj R-squared = 0.0050

Total | 139239836 705 197503.313 Root MSE = 443.3

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lnage | 122.9174 57.71672 2.13 0.034 9.599897 236.2349

_cons | 2821.777 209.4207 13.47 0.000 2410.613 3232.941

------------------------------------------------------------------------------

However, you have particularly strong feelings about Morgan’s functional form assump-
tions. Having gotten very little sleep these past weeks studying for several midterms, you think
that kids sleep a lot, young adults probably sleep less (graduate students sleep even less), and old
people sleep a lot. You think the relationship between sleep and age is quadratic, and you show
Morgan your results:

Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 2, 703) = 5.22

Model | 2039007.98 2 1019503.99 Prob>F = 0.0056

Residual | 137200828 703 195164.762 R-squared = 0.0146

-------------+------------------------------ Adj R-squared = 0.0118

Total | 139239836 705 197503.313 Root MSE = 441.77

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

2
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Source | SS df MS Number of obs = 706

-------------+------------------------------ F( 2, 703) = 5.22

Model | 2039007.98 2 1019503.99 Prob>F = 0.0056

Residual | 137200828 703 195164.762 R-squared = 0.0146

-------------+------------------------------ Adj R-squared = 0.0118

Total | 139239836 705 197503.313 Root MSE = 441.77

------------------------------------------------------------------------------

sleep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | -21.4904 11.73674 -1.83 0.068 -44.53366 1.552851

agesquared | .3011932 .140117 2.15 0.032 .0260954 .576291

_cons | 3608.03 230.6457 15.64 0.000 3155.193 4060.867

------------------------------------------------------------------------------

These models are “non-nested” because one cannot be written as a special case of the other.
Since there are more variables in your specification, we’d expect R2 to mechanically increase, so
it’s not the best way to settle this dispute between you and Morgan. However, the adjusted R2,
which will take the different number of variables into account, is still on your side. Note that the
minimum of the quadratic function is at 35.6 years. I guess we’re all going to have to wait a long
time for more sleep!

II. Review: Dummy variables
In econometrics, binary variables (or zero-one variables) are referred to as dummy variables.

We must decide which event is associated to the value of 1 and which event is associated the value
of 0. Ex: we often include a “female” dummy in our regression which takes a value of 1 if the
person is a female and 0 if the person is a male. Consider the following model (p.226 Woolridge):

wage = b0 + b1 f emale + b2educ + u

How do we interpret the d0 parameter? Well because f emale = 1 corresponds to females and
f emale = 0 corresponds to males:

E[wage| f emale = 0, educ] = b0 + b2educ
E[wage| f emale = 1, educ] = b0 + b1 + b2educ

E[wage| f emale = 1, educ] � E[wage| f emale = 0, educ] = b1

For a given level of education, the difference between females and males wages is captured by d0.

Recall, why don’t we include both female and male in the regression?

• This would be redundant: when we write the regression as we do above, the intercept for
males is b0 and the intercept for female is b0 + b10. Because there are only two groups, we
only need to have two intercepts.

• Using two dummies introduces perfect collinearity because f emale + male = 1: female is a
perfect linear function of female.

3

Which do we prefer? Look at Adj− R2
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Choice Between y and ln(y)

Rather than trying to choose between what x to include in a

model, what if we are trying to choose between different functional

forms of y? A common example is the choice between y and ln(y)

A natural choice might be to run both regressions:

y = β̂0 + β̂1x1 + ... + β̂kxk + û

ln(y) = α̂0 + α̂1x1 + ... + α̂kxk + û

And then look at the R2 of each model to decide the best fit. But

this is wrong
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Choice Between y and ln(y)

How can we see the problem? Remember that R2 = corr(y, ŷ)2 so

what we’re actually comparing is:

corr(y, ŷ)2 to corr(ln(y), l̂n(y))2

• Comparing the R2 for each model isn’t an apples to apples

comparison

• We need to do something else
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Choice Between y and ln(y)

Process to choose:

1 Estimate the log model: ln(y) = α̂0 + α̂1x1 + ... + α̂kxk + u

2 Predict: y from the log model: ŷ = el̂n(y)e
σ̂2
2

3 Find the correlation and square it (to get alternative R2
log): y

and the ŷ from the log model. This gives us an alternative R2.

4 Estimate the linear model (to get R2
lin):

y = β̂0 + β̂1x1 + ... + β̂kxk + u and get it’s R2

5 Compare R2
lin to R2

log and choose the higher one

Note: that to predict ŷ from l̂n(y), you need to raise to the

exponential and multiply by e
σ̂2
2 (where σ̂2 is found in the

regression output under MS residual)
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Choice Between y and ln(y): Example

. reg lprice llotsize lsqrft bdrms

Source | SS df MS Number of obs = 88

-------------+------------------------------ F( 3, 84) = 50.42

Model | 5.15504028 3 1.71834676 Prob > F = 0.0000

Residual | 2.86256324 84 .034078134 R-squared = 0.6430

-------------+------------------------------ Adj R-squared = 0.6302

Total | 8.01760352 87 .092156362 Root MSE = .1846

------------------------------------------------------------------------------

lprice | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

llotsize | .1679667 .0382812 4.39 0.000 .0918404 .244093

lsqrft | .7002324 .0928652 7.54 0.000 .5155597 .8849051

bdrms | .0369584 .0275313 1.34 0.183 -.0177906 .0917074

_cons | -1.297042 .6512836 -1.99 0.050 -2.592191 -.001893

------------------------------------------------------------------------------
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Choice Between y and ln(y): Example

. reg price lotsize sqrft bdrms

Source | SS df MS Number of obs = 88

-------------+------------------------------ F( 3, 84) = 57.46

Model | 617130.701 3 205710.234 Prob > F = 0.0000

Residual | 300723.805 84 3580.0453 R-squared = 0.6724

-------------+------------------------------ Adj R-squared = 0.6607

Total | 917854.506 87 10550.0518 Root MSE = 59.833

------------------------------------------------------------------------------

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

lotsize | .0020677 .0006421 3.22 0.002 .0007908 .0033446

sqrft | .1227782 .0132374 9.28 0.000 .0964541 .1491022

bdrms | 13.85252 9.010145 1.54 0.128 -4.065141 31.77018

_cons | -21.77031 29.47504 -0.74 0.462 -80.38466 36.84405

------------------------------------------------------------------------------
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Choice Between y and ln(y): Example

Process:

1 Estimate the log model:

reg log(price) log(lotsize) log(sqrft) bdrms

2 Get your predictions from this regression: predict lpricehat

3 Predict: y from the log model: gen

pricehat=exp(lpricehat)*exp(.034078134/2)

4 Find the correlation and square it: correl price pricehat

(= 0.7377)

5 Find the R2 from the linear regression (R2 = 0.6724)

6 Compare: For predicting price, the log model is notably better.
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Review

1 One parameter: use t-stat and test significance

2 Multiple parameters: use F-test

3 Choosing between two non-nested models: Adj R2

4 Choosing between different functional forms for y (y and

ln(y)), use process above
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